Summary
Clinical characteristics.
Primary familial brain calcification (PFBC) is a neurodegenerative disorder with characteristic calcium deposits in the basal ganglia and other brain areas visualized on neuroimaging. Most affected individuals are in good health during childhood and young adulthood and typically present in the fourth to fifth decade with a gradually progressive movement disorder and neuropsychiatric symptoms. The movement disorder first manifests as clumsiness, fatigability, unsteady gait, slow or slurred speech, dysphagia, involuntary movements, or muscle cramping. Neuropsychiatric symptoms, often the first or most prominent manifestations, range from mild difficulty with concentration and memory to changes in personality and/or behavior, to psychosis and dementia. Seizures of various types occur frequently, some individuals experience chronic headache and vertigo; urinary urgency or incontinence may be present.
Diagnosis/testing.
The diagnosis of PFBC relies on: visualization of bilateral calcification of the basal ganglia on neuroimaging; presence of progressive neurologic dysfunction; and absence of metabolic, infectious, toxic, or traumatic cause. A family history consistent with autosomal dominant inheritance is often found as well. Thus, the diagnosis of PFBC should be left for those cases where other neurologic or systemic disorders potentially associated with ectopic calcium deposits have not been identified after appropriate examinations. A heterozygous pathogenic variant in PDGFB, PDGFRB, SLC20A2, or XPR1 has been identified in a little more than half of those individuals with a clinical diagnosis of PFBC.
Management.
Treatment of manifestations: Pharmacologic treatment to improve anxiety, depression, obsessive-compulsive behaviors, as well as for movement disorders (e.g., tremors) or dystonia; anticholinergics for urinary incontinence; anti-seizure medication for seizures.
Surveillance: Annual neurologic and neuropsychiatric assessments.
Agents/circumstances to avoid: Cautious use of neuroleptic medications as they may exacerbate extrapyramidal symptoms.
Genetic counseling.
PFBC is inherited in an autosomal dominant manner. Most individuals diagnosed with PFBC have an affected parent identified either clinically or by brain CT scan. However, the transmitting parent may be clinically asymptomatic throughout life or may develop disease manifestations that are later in onset or less severe than those in the proband. If a parent of the proband is affected and/or is known to be heterozygous for a PFBC-related pathogenic variant, sibs of a proband are at a 50% risk of inheriting the pathogenic variant; however, the risk to sibs of being clinically affected may be slightly lower due to reduced penetrance. Offspring of an affected individual have a 50% chance of inheriting the pathogenic variant. Prenatal testing for pregnancies at increased risk is possible if the pathogenic variant has been identified in an affected family member.
Clinical Characteristics
Clinical Description
Since the first description of primary familial brain calcification (PFBC) [Foley 1951], more than 100 affected kindreds (which further highlight the heterogeneous clinical presentation) have been reported [Manyam et al 2001a, Volpato et al 2009, Ashtari & Fatehi 2010, Batla et al 2017].
The clinical manifestations of PFBC are limited to the nervous system. Most individuals with PFBC are in good health during childhood and young adulthood.
Age of onset. Typically, the age of onset is between 30 and 60 years with gradual progression of the movement disorder and neuropsychiatric symptoms.
Variability. Age at onset, clinical presentation, and severity of PFBC are variable both between and within families. No correlation has been identified between age of onset, extent of calcium deposits, and neurologic deficits. In some instances, calcifications precede the clinical manifestations by several years [Manyam et al 1992] while there are other reports of young symptomatic individuals with no changes observed on CT scan who only later develop radiologically visible calcifications [Geschwind et al 1999].
The movement disorder often first manifests as clumsiness, fatigability, unsteady gait, slow or slurred speech, dysphagia, involuntary movements, or muscle cramping [Manyam et al 1992, Manyam et al 2001b]. Neurologic evaluation generally reveals features similar to those seen in Parkinson disease, with variable combinations of bradykinesia, rigidity, festinating gait, hypophonia, mask-like facies, diminished blinking, dystonia, tremor, choreoathetosis, or dyskinesia. Palmomental and other frontal release signs may be elicited.
Pyramidal or cerebellar signs may also be present; in some cases the cerebellar picture predominates.
Dystonia is prominent in a few families [Larsen et al 1985].
Neuropsychiatric symptoms, often the first or most prominent manifestations, range from mild concentration and memory deficits to changes in personality or behavior to psychosis and dementia [Geschwind et al 1999, Benke et al 2004, Shakibai et al 2005, Nicolas et al 2013a]. It has been suggested that those who become symptomatic early in adulthood are more likely to have psychosis.
The pattern of dementia includes frequent frontal-executive dysfunction and resembles that occurring in other disorders affecting subcortical structures, including Wilson disease and Huntington disease [Geschwind et al 1999, Benke et al 2004, Modrego et al 2005, Weisman et al 2007].
Although premorbid psychomotor development is generally normal, low IQ and mild delay in motor or intellectual milestones during school age are described.
Other
Seizures of various types occur frequently.
Severe hypertension has been reported in two sisters with basal ganglia calcification with no other neurologic or systemic abnormalities [
Puvanendran & Wong 1980]. Whether this represents an unusual association, a rare manifestation of PFBC, or a distinct genetic disorder with basal ganglia calcification is unknown.
General medical examination, growth, and facial appearance are normal. Strength and sensation are generally intact. Specifically, no abnormalities are detected in the skull, hands, teeth, nails, or skin, and there is no evidence of a parathyroid disorder.
Neurophysiologic studies are generally normal.
Genotype-Phenotype Correlations
Batla et al [2017] reviewed 137 cases of PFBC published in the literature with a positive genetic test result and characteristic CT scan findings. In these, parkinsonism was more commonly observed in those with SLC20A2 pathogenic variants and headache was more common in those with PDGFB pathogenic variants. Thalamus and dentate nucleus were reported as more frequently involved in association with SLC20A2 pathogenic variants, while only those with PDGFB pathogenic variants were noted to have cysts in the white matter.
In addition, the limited number of affected individuals with PDGFRB pathogenic variants showed clinical and radiologic manifestations that are indistinguishable from families with pathogenic variants in SCL20A2 and from affected individuals with no detected pathogenic variants [Nicolas et al 2013b].
Penetrance
Incomplete and age-related penetrance is reported in PFBC, but the factors that influence clinical manifestations are unknown. The degree of penetrance may depend on whether diagnosis is considered at an anatomic level (presence of calcifications in the brain) or at a clinical level (presence of clinical symptoms).
With respect to calcium deposits, analysis of reported pedigrees indicates about 95% penetrance by age 50 years or older. If clinical manifestations are considered, the penetrance is incomplete and may vary between and within families. The precise clinical penetrance has not been fully established for the different PFBC-related genes and pathogenic variants, but it may be around 70% or even lower [Westenberger & Klein 2014]. This figure can be difficult to establish for late-onset slowly progressive neurologic disorders whose symptoms overlap with common traits such as migraine headache, vertigo, and mild psychiatric manifestations including anxiety or depression.
No reliable correlations exist between age of onset, extent of calcium deposits, and neurologic deficit. Although most individuals with calcifications eventually develop neurologic dysfunction, the type or severity of clinical symptoms cannot be predicted from the pattern of calcification.
Nomenclature
Traditionally described as "Fahr's disease," this disorder has been referred to in the literature by about 35 different names [Manyam 2005], with familial idiopathic basal ganglia calcification (FIBGC) being until recently the preferred term.
With the identification of the first associated genes, following an autosomal dominant trait, the term "idiopathic" (i.e., calcifications of unknown cause) ceased to be appropriate and was replaced by "primary" (as opposed to calcifications secondary to infectious, inflammatory, toxic, or other causes). Therefore, and because calcium deposits are not limited to the basal ganglia but can also be seen in other brain areas (as described in Suggestive Findings), the designation "primary familial brain calcification" (PFBC) has been proposed.
Although the term Fahr's disease is still often used to designate either familial or sporadic basal ganglia calcification, it is unknown whether the nonfamilial cases represent the same disease. The term Fahr's disease is ambiguous and therefore should be avoided.
Prevalence
The prevalence of PFBC is unknown; more than 100 kindreds and sporadic cases have been reported. However, the disorder is probably under-recognized because of insufficient investigation of other family members of individuals presenting with brain calcification.
Differential Diagnosis
Parathyroid Disorders
Hypoparathyroidism (HP), idiopathic or postsurgical, is the most common cause of symmetric calcification of the basal ganglia [Illum & Dupont 1985]. HP usually begins in childhood or adolescence (i.e., earlier than what is observed in PFBC). In individuals with HP, decreased serum concentration of parathyroid hormone (PTH) results in hypocalcemia and hyperphosphatemia and their clinical manifestations (i.e., tetany, muscle weakness, paresthesia, seizures, cardiac arrhythmias, and cognitive impairment). Additional features include cataracts, renal dysfunction, and increased bone density [Abate & Clarke 2017]. Genetic forms have been described, both syndromic (e.g., 21q and 22q chromosome abnormalities) and nonsyndromic (e.g., pathogenic variants in PTH, GCM2, SOX3, CASR, GNA11). Because treatment of HP may lead to marked clinical improvement, it is important to evaluate individuals with calcification of the basal ganglia for HP.
Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are the phenotypic spectrum caused by germline inactivating (loss-of-function) GNAS variants (GNAS encodes the alpha subunit of a G-protein involved in signal transduction). PHP and PPHP can occur in the same family. Occasionally, variants of PHP or PPHP may have few or no somatic abnormalities, making diagnosis on clinical grounds difficult. Inheritance is autosomal dominant. See Disorders of GNAS Inactivation.
PHP results from end-organ unresponsiveness to PTH. The biochemical hallmarks are hypocalcemia and hyperphosphatemia with an elevated serum concentration of PTH. The average age of onset of PHP is age eight to ten years. Most clinical manifestations are related to hypocalcemia, and thus similar to those in hypoparathyroidism, with intellectual disability being somewhat more common in PHP. Affected individuals may have other manifestations of Albright hereditary osteodystrophy, including short stature, round facies, obesity, soft tissue calcification, short metacarpals or metatarsals, and other hormone resistance, resulting in hypothyroidism and/or hypogonadism. PPHP is characterized by the physical findings of Albright hereditary osteodystrophy with normal serum concentration of calcium and phosphorus and normal response to PTH stimulation.
Kenny-Caffey syndrome type 1 (OMIM 244460) is characterized by growth delay, cortical thickening of the long bones, hypocalcemia, hypoparathyroidism, and calcification of the basal ganglia. It is caused by pathogenic variants in TBCE, which encodes a chaperone protein required for proper folding of alpha-tubulin subunits and the formation of alpha-beta-tubulin heterodimers [Parvari et al 2002]. Inheritance is autosomal recessive.
Infectious Diseases
Intrauterine or perinatal infection with toxoplasmosis, rubella, cytomegalovirus, or herpes simplex virus may result in calcification of the basal ganglia and dentate nucleus, as well as irregular masses of calcium distributed throughout the brain. Central nervous system (CNS) infection should be considered when clinical onset occurs soon after birth, especially in the presence of chorioretinitis, microcephaly, or neurologic abnormalities.
Noncongenital, active viral encephalitis should also be considered in individuals with brain calcifications and no family history [Morita et al 1998]. In HIV/AIDS, either opportunistic infections or inflammatory changes may cause symmetric calcified lesions in the basal ganglia, mostly in children.
Bacterial or parasitic infections such as brucellosis, toxoplasmosis, or cysticercosis should be considered, although the appearance and distribution of calcium deposits are generally quite different from PFBC.
Brucellosis. Although cerebral calcification is rare, the detection of basal ganglia calcification in individuals residing in endemic areas should raise the possibility of a CNS brucellar infection.
Toxoplasmosis. The basal ganglia are affected in up to 75% of cases.
Parenchymatous cysticercosis. Calcifications are a manifestation of larval death and are generally rounded, less symmetric, and scattered within the grey matter or grey-white matter junction, sometimes in the basal ganglia or in the deep matter. This diagnostic possibility should be considered in regions where cysticercal infection is common. MRI is more sensitive than CT scan in identifying the parasitic cysts.
Inherited Congenital or Early-Onset Syndromes
Calcifications in the basal ganglia and other brain structures are observed in several congenital or early-onset syndromes with normal calcium-phosphorus metabolism and are frequently associated with intellectual disability.
Cockayne syndrome is an autosomal recessive disorder caused by impaired DNA repair resulting from pathogenic variants in ERCC6 and ERCC8; it is characterized by developmental delay, photosensitivity, retinal degeneration, and deafness. Intracranial calcifications, including of the basal ganglia, are observed in some individuals [Rapin et al 2006].
Aicardi-Goutières syndrome is typically an early-onset encephalopathy characterized by severe intellectual and neuromuscular problems associated with calcification of the basal ganglia (particularly the putamen, globus pallidus, and thalamus), leukodystrophy, cerebral atrophy, and chronic CSF leukocytosis. Seven associated genes have been identified: ADAR, RNASEH2A, IFIH1, RNASEH2B, RNASEH2C, SAMHD1, and TREX1. Inheritance is most frequently autosomal recessive.
Immunodeficiency 38 with basal ganglia calcification (OMIM 616126) is an autosomal recessive immune system disorder caused by a deficiency in the interferon-induced protein ISG15 and associated with basal ganglia calcifications [Zhang et al 2015].
Tuberous sclerosis complex involves abnormalities of the skin (hypomelanotic macules, facial angiofibromas, shagreen patches, fibrous facial plaques, ungual fibromas), brain (cortical tubers, subependymal nodules, seizures, intellectual disability/developmental delay), kidney (angiomyolipomas, cysts), and heart (rhabdomyomas, arrhythmias). The cerebral hamartomas may be calcified, however, they are mainly periventricular or subcortical. Two associated genes, TSC1 and TSC2, have been identified. Inheritance is autosomal dominant.
Cerebroretinal microangiopathy with calcifications and cysts (OMIM 612199). This autosomal recessive condition, also referred to as Coats plus syndrome, is caused by pathogenic variants in CTC1 [Anderson et al 2012]. The spectrum of neurologic manifestations is complex and includes cognitive deterioration, seizures, spastic tetraparesis, and cerebellar signs. Neuroimaging features are highly characteristic of an encephalopathy with diffuse intracranial calcifications and formation of parenchymal cysts. Affected individuals also have growth retardation, retinal exudates, and skeletal malformations [Linnankivi et al 2006, Briggs et al 2008].
Pantothenate kinase-associated neurodegeneration (PKAN) is a form of neurodegeneration with brain iron accumulation (NBIA). PKAN is characterized by progressive dystonia and basal ganglia iron deposition, with onset that usually occurs before age ten. Commonly associated features include dysarthria, rigidity, and pigmentary retinopathy. About 25% of affected individuals have an "atypical" presentation with later onset (age >10 years), prominent speech defects, psychiatric disturbances, and more gradual progression of disease. Approximately 50% of individuals with a clinical diagnosis of NBIA have pathogenic variants in PANK2. To date, all individuals with NBIA and "eye-of-the-tiger" sign on T2-weighted MRI have at least one pathogenic variant in PANK2. Inheritance is autosomal recessive.
Down syndrome. Reports of basal ganglia calcifications in Down syndrome are abundant [Takashima & Becker 1985].
Other. Additional rare conditions associated with brain calcification include lipoid proteinosis, dyskeratosis congenita, carbonic anhydrase deficiency (OMIM 259730), biotinidase deficiency, tetrahydrobiopterin-deficient hyperphenylalaninemia (OMIM 261630), and hereditary folate malabsorption.
Adult-Onset Neurodegenerative Conditions
Neuroferritinopathy, another form of NBIA, typically presents with progressive adult-onset chorea or dystonia and subtle cognitive deficits. The movement disorder involves additional limbs within five to ten years and becomes more generalized within 20 years. Cognitive deficits, behavioral issues, and dysphagia are major problems with time. The diagnosis of neuroferritinopathy is based on clinical findings, including adult-onset chorea or dystonia, and MRI or CT showing excess iron storage or cystic degeneration in the putamina. FTL is the only gene currently known to be associated with neuroferritinopathy. Inheritance is autosomal dominant.
DRPLA
(dentatorubral-pallidoluysian atrophy). Bilateral calcification of the globus pallidus has also been reported in a large African American family from North Carolina with DRPLA (referred to as the Haw River syndrome [Burke et al 1994a, Burke et al 1994b]). Affected individuals showed a varied combination of gait ataxia, dysarthria, involuntary movements, seizures, psychosis, and dementia, overlapping with the clinical picture of families with PFBC. The diagnosis of DRPLA was based on positive family history, characteristic clinical findings, and the detection of a CAG repeat expansion in ATN1.
Spinocerebellar ataxia type 20
(SCA20) is associated with pronounced cerebellar calcifications affecting the dentate nucleus, typically without involvement of the basal ganglia. Inheritance is autosomal dominant and the disease locus has been mapped to chromosome 11 in a single large family.
Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy
(PLOSL,
Nasu-Hakola disease) is characterized by fractures (resulting from polycystic osseous lesions), frontal lobe syndrome, and progressive presenile dementia beginning in the fourth decade. Bilateral calcifications of the basal ganglia, most often in the putamina, are commonly observed in CT scans, and may occur before CNS symptoms appear [Paloneva et al 2001]. Variants in TYROBP and TREM2 are known to cause PLOSL. Inheritance is autosomal recessive.
Diffuse neurofibrillary tangles with calcification (DNTC, or Kosaka-Shibayama disease [Ukai & Kosaka 2016]) is a rare entity, largely observed in individuals of Japanese descent, characterized by dementia, cortical (temporal or frontotemporal) atrophy, neurofibrillary tangles, and symmetric brain calcifications.
Dystonia/parkinsonism, hypermanganesemia, polycythemia, and chronic liver disease is a movement disorder resulting from manganese accumulation in the basal ganglia. This condition results from biallelic loss-of-function variants in SLC30A10. Neuroimaging findings in individuals with this condition may mimic those seen in individuals with PFBC [Quadri et al 2012, Tuschl et al 2012].
Other
Calcifications of the basal ganglia may result from the following:
Necrosis of neural tissue caused by traumatic, toxic, or physical insults. These include but are not limited to perinatal anoxia, Rh incompatibility, vitamin D and carbon monoxide intoxication, mercury and lead poisoning, exposure to ionizing radiation, and methotrexate therapy.
Systemic lupus erythematosus (SLE). A subset of patients with cerebral lupus can present brain calcifications, which can be extensive [
Raymond et al 1996].
Celiac disease. Although intracranial calcifications have been described, the calcium deposits are mainly occipital. Other neurologic manifestations can include cerebellar ataxia, epilepsy, and peripheral neuropathy.
Normal aging. Calcification of the basal ganglia is an incidental finding in about 0.3%-1.5% of brain CT scans, especially in elderly individuals. Microscopic calcifications can be observed in the globus pallidus and dentate nucleus in up to 70% of autopsy series. These calcifications are generally confined to the globus pallidus and do not have associated clinical findings [
Förstl et al 1992]. Basal ganglia calcifications in the elderly have been associated with psychotic symptoms [
Ostling et al 2003].
Genetic Counseling
Genetic counseling is the process of providing individuals and families with
information on the nature, mode(s) of inheritance, and implications of genetic disorders to help them
make informed medical and personal decisions. The following section deals with genetic
risk assessment and the use of family history and genetic testing to clarify genetic
status for family members; it is not meant to address all personal, cultural, or
ethical issues that may arise or to substitute for consultation with a genetics
professional. —ED.
Mode of Inheritance
Primary familial brain calcification (PFBC) is inherited in an autosomal dominant manner.
Risk to Family Members
Parents of a proband
Most individuals diagnosed with PFBC have an affected parent identified either clinically or by brain CT scan. However, the transmitting parent may be clinically asymptomatic throughout life or may develop disease manifestations that are later in onset or less severe than those in the proband.
The proportion of cases caused by a de novo
PDGFB, PDGFRB, SLC20A2, or XPR1 pathogenic variant is unknown. Whether nonfamilial (simplex) cases represent de novo pathogenic variants, incomplete penetrance, or non-genetic conditions is also not known.
Molecular genetic testing, physical and neurologic examination, and CT scan are recommended for the parents of a proband with an apparent de novo pathogenic variant.
If the pathogenic variant found in the proband cannot be detected in leukocyte DNA of either parent, possible explanations include a de novo pathogenic variant in the proband or germline mosaicism in a parent. Though theoretically possible, no instances of germline mosaicism have been reported to date.
The family history of some individuals diagnosed with PFBC may appear to be negative because of failure to recognize the disorder in family members, reduced penetrance, early death of the parent before the onset of symptoms, or late onset of the disease in the affected parent. Therefore, an apparently negative family history cannot be confirmed unless appropriate clinical evaluation and/or molecular genetic testing has been performed on the parents of the proband.
Sibs of a proband
The risk to the sibs of a proband depends on the genetic status of the proband's parents.
If a parent of the proband is affected and/or is known to be heterozygous for a PFBC-related pathogenic variant, sibs of a proband are at a 50% of inheriting the pathogenic variant; however, the risk to sibs of being clinically affected may be slightly lower because of reduced penetrance (see
Penetrance).
If the pathogenic variant found in the proband cannot be detected in the leukocyte DNA of either parent, the empiric recurrence risk to sibs is approximately 1% because of the theoretic possibility of parental germline mosaicism.
The absence of clinical symptoms in parents whose genetic status is unknown cannot be used to predict risk to sibs of a proband because of the possibility of reduced penetrance in a heterozygous parent or the theoretic possibility of parental germline mosaicism.
Offspring of a proband. Each child of an individual with a PFBC-related pathogenic variant has a 50% chance of inheriting the pathogenic variant.
Other family members. The risk to other family members depends on the status of the proband's parents: if a parent has a PFBC-related pathogenic variant, his or her family members may be at risk.
Related Genetic Counseling Issues
A thorough discussion of the implications and limitations of clinical genetic testing, particularly in presymptomatic at-risk individuals, is advisable.
Predictive testing of at-risk asymptomatic adults. Molecular genetic testing is possible if a PDGFB, PDGFRB, SLC20A2, or XPR1 pathogenic variant has been identified in an affected family member. Since calcium deposits may precede the onset of clinical symptoms by several years, a brain CT scan also serves as a presymptomatic test in at-risk individuals. Thus, psychological and ethical considerations in offering such testing to asymptomatic adults should be similar to those applied for other neurodegenerative disorders in which a curative treatment is not currently available.
Molecular genetic testing and brain CT scan are not useful in predicting age of onset, severity or type of symptoms, or rate of progression in asymptomatic individuals. Molecular genetic testing and testing for calcium deposits using brain CT scan in the absence of definite clinical symptoms of the disease is predictive testing.
Predictive testing of at-risk asymptomatic individuals younger than age 18 years who are at risk for adult-onset disorders for which no curative or preventive treatment exists is not considered appropriate, primarily because it negates the autonomy of the child with no compelling medical benefit. Further, concern exists regarding the potential unhealthy adverse effects that such information may have on family dynamics, the risk of discrimination and stigmatization in the future, and the anxiety that such information may cause. Furthermore, a CT scan will not remove uncertainty in the case of PFBC because penetrance is age dependent, reaching about 95% by age 50 years.
For more information, see also the National Society of Genetic Counselors position statement on genetic testing of minors for adult-onset conditions and the American Academy of Pediatrics and American College of Medical Genetics and Genomics policy statement: ethical and policy issues in genetic testing and screening of children.
It is appropriate to consider testing symptomatic individuals regardless of age in a family with an established diagnosis of PFBC.
Considerations in families with an apparent de novo pathogenic variant. When neither parent of a proband with an autosomal dominant condition has the pathogenic variant identified in the proband or clinical evidence of the disorder, the pathogenic variant is likely de novo. However, non-medical explanations including alternate paternity or maternity (e.g., with assisted reproduction) and undisclosed adoption could also be explored.
Family planning
The optimal time for determination of genetic risk and discussion of the availability of prenatal/preimplantation genetic testing is before pregnancy.
It is appropriate to offer genetic counseling (including discussion of potential risks to offspring and reproductive options) to young adults who are affected or at risk.
DNA banking. Because it is likely that testing methodology and our understanding of genes, pathogenic mechanisms, and diseases will improve in the future, consideration should be given to banking DNA from probands in whom a molecular diagnosis has not been confirmed (i.e., the causative pathogenic mechanism is unknown).
Prenatal Testing and Preimplantation Genetic Testing
Once the PDGFB, PDGFRB, SLC20A2, or XPR1 pathogenic variant has been identified in an affected family member, prenatal testing for a pregnancy at increased risk and preimplantation genetic testing for PFBC are possible.
Differences in perspective may exist among medical professionals and within families regarding the use of prenatal testing. While most centers would consider use of prenatal testing to be a personal decision, discussion of these issues may be helpful.