U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Boyd WA, Boyles AL, Blain RB, et al. NTP Research Report on the Scoping Review of Potential Human Health Effects Associated with Exposures to Neonicotinoid Pesticides: Research Report 15 [Internet]. Research Triangle Park (NC): National Toxicology Program; 2020 Sep.

Cover of NTP Research Report on the Scoping Review of Potential Human Health Effects Associated with Exposures to Neonicotinoid Pesticides

NTP Research Report on the Scoping Review of Potential Human Health Effects Associated with Exposures to Neonicotinoid Pesticides: Research Report 15 [Internet].

Show details

References

  1. Abou-Donia MB, Goldstein LB, Bullman S, Tu T, Khan WA, Dechkovskaia AM, Abdel-Rahman AA. 2008. Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J Toxicol Environ Health A. 71(2):119–130. 10.1080/15287390701613140 [PubMed: 18080902] [CrossRef]
  2. Alloisio S, Nobile M, Novellino A. 2015. Multiparametric characterisation of neuronal network activity for in vitro agrochemical neurotoxicity assessment. Neurotoxicology. 48:152–165. 10.1016/j.neuro.2015.03.013 [PubMed: 25845298] [CrossRef]
  3. Babelova J, Sefcikova Z, Cikos S, Spirkova A, Kovarikova V, Koppel J, Makarevich AV, Chrenek P, Fabian D. 2017. Exposure to neonicotinoid insecticides induces embryotoxicity in mice and rabbits. Toxicology. 392:71–80. 10.1016/j.tox.2017.10.011 [PubMed: 29061322] [CrossRef]
  4. Bal R, Erdogan S, Theophilidis G, Baydas G, Naziroglu M. 2010. Assessing the effects of the neonicotinoid insecticide imidacloprid in the cholinergic synapses of the stellate cells of the mouse cochlear nucleus using whole-cell patch-clamp recording. Neurotoxicology. 31(1):113–120. 10.1016/j.neuro.2009.10.004 [PubMed: 19853623] [CrossRef]
  5. Bao H, Shao X, Zhang Y, Cheng J, Wang Y, Xu X, Fang J, Liu Z, Li Z. 2016. IPPA08 allosterically enhances the action of imidacloprid on nicotinic acetylcholine receptors. Insect Biochem Mol Biol. 79:36–41. 10.1016/j.ibmb.2016.10.010 [PubMed: 27793626] [CrossRef]
  6. Bhaskar R, Mishra AK, Mohanty B.2017. Neonatal exposure to endocrine disrupting chemicals impairs learning behaviour by disrupting hippocampal organization in male Swiss albino mice. Basic Clin Pharmacol Toxicol. 10.1111/bcpt.12767 [PubMed: 28208233] [CrossRef]
  7. Bhaskar R, Mohanty B. 2014. Pesticides in mixture disrupt metabolic regulation: In silico and in vivo analysis of cumulative toxicity of mancozeb and imidacloprid on body weight of mice. Gen Comp Endocrinol. 205:226–234. 10.1016/j.ygcen.2014.02.007 [PubMed: 24530807] [CrossRef]
  8. Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EA, et al 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res Int. 22(1):35–67. 10.1007/s11356-014-3332-7 [PMC free article: PMC4284396] [PubMed: 25096486] [CrossRef]
  9. Camlica Y, Bediz SC, Comelekoglu U, Yilmaz SN. 2018. Toxic effect of acetamiprid on Rana ridibunda sciatic nerve (electrophysiological and histopathological potential). Drug Chem Toxicol. 42(3):264–269. 10.1080/01480545.2018.1442475 [PubMed: 29536770] [CrossRef]
  10. Carmichael SL, Yang W, Roberts E, Kegley SE, Padula AM, English PB, Lammer EJ, Shaw GM. 2014. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California. Environ Res. 135:133–138. 10.1016/j.envres.2014.08.030 [PMC free article: PMC5525322] [PubMed: 25262086] [CrossRef]
  11. Caron-Beaudoin E, Denison MS, Sanderson JT. 2016. Effects of neonicotinoids on promoter-specific expression and activity of aromatase (CYP19) in human adrenocortical carcinoma (H295R) and primary umbilical vein endothelial (HUVEC) cells. Toxicol Sci. 149(1):134–144. 10.1093/toxsci/kfv220 [PubMed: 26464060] [CrossRef]
  12. Caron-Beaudoin E, Viau R, Hudon-Thibeault AA, Vaillancourt C, Sanderson JT. 2017. The use of a unique co-culture model of fetoplacental steroidogenesis as a screening tool for endocrine disruptors: The effects of neonicotinoids on aromatase activity and hormone production. Toxicol Appl Pharmacol. 332:15–24. 10.1016/j.taap.2017.07.018 [PubMed: 28750898] [CrossRef]
  13. Cartereau A, Martin C, Thany SH. 2017. Neonicotinoid insecticides differently modulate acetycholine-induced currents on mammalian alpha7 nicotinic acetylcholine receptors. Br J Pharmacol. 175(11):1987–1998. . 10.1111/bph.14018 [PMC free article: PMC5978969] [PubMed: 28853147] [CrossRef]
  14. ChemIDplus.2017. ChemIDplus – a TOXNET database. Bethesda, MD: National Institutes of Health, National Library of Medicine. https://chem​.nlm.nih.gov/chemidplus/.
  15. Chen M, Tao L, McLean J, Lu C. 2014. Quantitative analysis of neonicotinoid insecticide residues in foods: Implication for dietary exposures. J Agric Food Chem. 62(26):6082–6090. 10.1021/jf501397m [PMC free article: PMC4081123] [PubMed: 24933495] [CrossRef]
  16. Christen V, Rusconi M, Crettaz P, Fent K. 2017. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro. Toxicol Appl Pharmacol. 325:25–36. 10.1016/j.taap.2017.03.027 [PubMed: 28385489] [CrossRef]
  17. Cimino AM, Boyles AL, Thayer KA, Perry MJ. 2017. Effects of neonicotinoid pesticide exposure on human health: A systematic review. Environ Health Perspect. 125(2):155–162. 10.1289/EHP515 [PMC free article: PMC5289916] [PubMed: 27385285] [CrossRef]
  18. Douglas MR, Tooker JF. 2015. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ Sci Technol. 49(8):5088–5097. 10.1021/es506141g [PubMed: 25793443] [CrossRef]
  19. Dwyer JB, McQuown SC, Leslie FM. 2009. The dynamic effects of nicotine on the developing brain. Pharmacol Ther. 122(2):125–139. 10.1016/j.pharmthera.2009.02.003 [PMC free article: PMC2746456] [PubMed: 19268688] [CrossRef]
  20. European Food Safety Authority (EFSA). 2013. Scientific opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid. EFSA J. 11(12):3471.10.2903/j.efsa.2013.3471 [CrossRef]
  21. Gawade L, Dadarkar SS, Husain R, Gatne M. 2013. A detailed study of developmental immunotoxicity of imidacloprid in Wistar rats. Food Chem Toxicol. 51:61–70. 10.1016/j.fct.2012.09.009 [PubMed: 23000444] [CrossRef]
  22. Gu YH, Li Y, Huang XF, Zheng JF, Yang J, Diao H, Yuan Y, Xu Y, Liu M, Shi HJ, et al 2013. Reproductive effects of two neonicotinoid insecticides on mouse sperm function and early embryonic development in vitro. PLoS One. 8(7):e70112. 10.1371/journal.pone.0070112 [PMC free article: PMC3726447] [PubMed: 23922925] [CrossRef]
  23. Gyori J, Farkas A, Stolyar O, Szekacs A, Mortl A, Wehovsky A. 2017. Inhibitory effects of four neonicotinoid active ingredients on acetylcholine esterase activity. Acta Biol Hung. 68(4):345–357. 10.1556/018.68.2017.4.1 [PubMed: 29262703] [CrossRef]
  24. Higgins J, Green S. 2011. Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration.
  25. Hladik ML, Kolpin DW, Kuivila KM. 2014. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environ Pollut. 193:189–196. 10.1016/j.envpol.2014.06.033 [PubMed: 25042208] [CrossRef]
  26. Hogg RC, Raggenbass M, Bertrand D. 2003. Nicotinic acetylcholine receptors: From structure to brain function. Rev Physiol Biochem Pharmacol. 147:1–46. 10.1007/s10254-003-0005-1 [PubMed: 12783266] [CrossRef]
  27. Jeschke P, Nauen R, Schindler M, Elbert A. 2011. Overview of the status and global strategy for neonicotinoids. J Agric Food Chem. 59(7):2897–2908. 10.1021/jf101303g [PubMed: 20565065] [CrossRef]
  28. Kara M, Yumrutas O, Demir CF, Ozdemir HH, Bozgeyik I, Coskun S, Eraslan E, Bal R. 2015. Insecticide imidacloprid influences cognitive functions and alters learning performance and related gene expression in a rat model. Int J Exp Pathol. 96(5):332–337. 10.1111/iep.12139 [PMC free article: PMC4693560] [PubMed: 26568164] [CrossRef]
  29. Kawahata I, Yamakuni T. 2018. Imidacloprid, a neonicotinoid insecticide, facilitates tyrosine hydroxylase transcription and phenylethanolamine N-methyltransferase mRNA expression to enhance catecholamine synthesis and its nicotine-evoked elevation in PC12D cells. Toxicology. 394:84–92. 10.1016/j.tox.2017.12.004 [PubMed: 29246838] [CrossRef]
  30. Keil AP, Daniels JL, Hertz-Picciotto I. 2014. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification: The CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Environ Health. 13(1):3. 10.1186/1476-069X-13-3 [PMC free article: PMC3922790] [PubMed: 24456651] [CrossRef]
  31. Khan DA, Hashmi I, Mahjabeen W, Naqvi TA. 2010. Monitoring health implications of pesticide exposure in factory workers in Pakistan. Environ Monit Assess. 168(1-4):231–240. 10.1007/s10661-009-1107-2 [PubMed: 19669582] [CrossRef]
  32. Kimura-Kuroda J, Komuta Y, Kuroda Y, Hayashi M, Kawano H. 2012. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One. 7(2):e32432. 10.1371/journal.pone.0032432 [PMC free article: PMC3290564] [PubMed: 22393406] [CrossRef]
  33. Kimura-Kuroda J, Nishito Y, Yanagisawa H, Kuroda Y, Komuta Y, Kawano H, Hayashi M. 2016. Neonicotinoid insecticides alter the gene expression profile of neuron-enriched cultures from neonatal rat cerebellum. Int J Environ Res Public Health. 13(10):987. 10.3390/ijerph13100987 [PMC free article: PMC5086726] [PubMed: 27782041] [CrossRef]
  34. Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K. 2012. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One. 7(1):e29268. 10.1371/journal.pone.0029268 [PMC free article: PMC3250423] [PubMed: 22235278] [CrossRef]
  35. Kudelska MM, Holden-Dye L, O’Connor V, Doyle DA. 2017. Concentration-dependent effects of acute and chronic neonicotinoid exposure on the behaviour and development of the nematode Caenorhabditis elegans. Pest Manag Sci. 73(7):1345–1351. 10.1002/ps.4564 [PubMed: 28261957] [CrossRef]
  36. Kugathas S, Audouze K, Ermler S, Orton F, Rosivatz E, Scholze M, Kortenkamp A. 2016. Effects of common pesticides on prostaglandin D2 (PGD2) inhibition in SC5 mouse Sertoli cells, evidence of binding at the COX-2 active site, and implications for endocrine disruption. Environ Health Perspect. 124(4):452–459. 10.1289/ehp.1409544 [PMC free article: PMC4829986] [PubMed: 26359731] [CrossRef]
  37. Lansdell SJ, Millar NS. 2000. The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology. 39(4):671–679. 10.1016/S0028-3908(99)00170-7 [PubMed: 10728888] [CrossRef]
  38. Latli B, D’Amour K, Casida JE. 1999. Novel and potent 6-chloro-3-pyridinyl ligands for the alpha4beta2 neuronal nicotinic acetylcholine receptor. J Med Chem. 42(12):2227–2234. 10.1021/jm980721x [PubMed: 10377228] [CrossRef]
  39. Levin ED. 2002. Nicotinic receptor subtypes and cognitive function. J Neurobiol. 53(4):633–640. 10.1002/neu.10151 [PubMed: 12436426] [CrossRef]
  40. Li P, Ann J, Akk G. 2011. Activation and modulation of human alpha4beta2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid. J Neurosci Res. 89(8):1295–1301. 10.1002/jnr.22644 [PMC free article: PMC3668458] [PubMed: 21538459] [CrossRef]
  41. Liu X, Zhang Q, Li S, Mi P, Chen D, Zhao X, Feng X. 2018. Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): A comparative study of deltamethrin, acephate, and thiamethoxam. Chemosphere. 199:16–25. 10.1016/j.chemosphere.2018.01.176 [PubMed: 29427810] [CrossRef]
  42. Marfo JT, Fujioka K, Ikenaka Y, Nakayama SM, Mizukawa H, Aoyama Y, Ishizuka M, Taira K. 2015. Relationship between urinary N-desmethyl-acetamiprid and typical symptoms including neurological findings: A prevalence case-control study. PLoS One. 10(11):e0142172. 10.1371/journal.pone.0142172 [PMC free article: PMC4633099] [PubMed: 26535579] [CrossRef]
  43. Mason R, Tennekes H, Sánchez-Bayo F, Jepsen PU. 2013. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immunol Toxicol. 1(1):3–12.10.7178/jeit.1 [CrossRef]
  44. Meijer M, Brandsema JA, Nieuwenhuis D, Wijnolts FM, Dingemans MM, Westerink RH. 2015. Inhibition of voltage-gated calcium channels after subchronic and repeated exposure of PC12 cells to different classes of insecticides. Toxicol Sci. 147(2):607–617. 10.1093/toxsci/kfv154 [PubMed: 26187449] [CrossRef]
  45. Meijer M, Dingemans MM, van den Berg M, Westerink RH. 2014. Inhibition of voltage-gated calcium channels as common mode of action for (mixtures of) distinct classes of insecticides. Toxicol Sci. 141(1):103–111. 10.1093/toxsci/kfu110 [PMC free article: PMC4833101] [PubMed: 24913802] [CrossRef]
  46. Methfessel C. 1992. Effect of imidacloprid on the acetylcholine receptor of rat muscle. Pflanzenschutz-Nachr Bayer. 45:369–380.
  47. Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K. 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ Int. 74:291–303. 10.1016/j.envint.2014.10.024 [PubMed: 25454246] [CrossRef]
  48. Nagata K, Aistrup GL, Song JH, Narahashi T. 1996. Subconductance-state currents generated by imidacloprid at the nicotinic acetylcholine receptor in PC 12 cells. Neuroreport. 7(5):1025–1028. 10.1097/00001756-199604100-00014 [PubMed: 8804044] [CrossRef]
  49. Nagata K, Song JH, Shono T, Narahashi T. 1998. Modulation of the neuronal nicotinic acetylcholine receptor-channel by the nitromethylene heterocycle imidacloprid. J Pharmacol Exp Ther. 285(2):731–738. [PubMed: 9580620]
  50. National Toxicology Program (NTP).2019. Tableau data on the scoping review of health effects of neonicotinoid pesticides. .10.22427/NTP-DATA-002-00069-0001-0000-8 [PubMed: 33136351] [CrossRef]
  51. Osterauer R, Kohler HR. 2008. Temperature-dependent effects of the pesticides thiacloprid and diazinon on the embryonic development of zebrafish (Danio rerio). Aquat Toxicol. 86(4):485–494. 10.1016/j.aquatox.2007.12.013 [PubMed: 18281107] [CrossRef]
  52. Özdemir HH, Kara M, Yumrutas O, Uckardes F, Eraslan E, Demir CF, Bal R.2014. Determination of the effects on learning and memory performance and related gene expressions of clothianidin in rat models. Cogn Neurodyn. 8(5):411-416. 10.1007/s11571-014-9293-1 [PMC free article: PMC4155062] [PubMed: 25206934] [CrossRef]
  53. Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, et al 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res Int. 22(1):68–102. 10.1007/s11356-014-3471-x [PMC free article: PMC4284392] [PubMed: 25223353] [CrossRef]
  54. Role LW, Berg DK. 1996. Nicotinic receptors in the development and modulation of CNS synapses. Neuron. 16(6):1077–1085. 10.1016/S0896-6273(00)80134-8 [PubMed: 8663984] [CrossRef]
  55. Rooney AA, Boyles AL, Wolfe MS, Bucher JR, Thayer KA. 2014. Systematic review and evidence integration for literature-based environmental health science assessments. Environ Health Perspect. 122(7):711–718. 10.1289/ehp.1307972 [PMC free article: PMC4080517] [PubMed: 24755067] [CrossRef]
  56. Rundlof M, Andersson GK, Bommarco R, Fries I, Hederstrom V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, et al 2015. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature. 521(7550):77–80. 10.1038/nature14420 [PubMed: 25901681] [CrossRef]
  57. Sano K, Isobe T, Yang J, Win-Shwe TT, Yoshikane M, Nakayama SF, Kawashima T, Suzuki G, Hashimoto S, Nohara K, et al 2016. In utero and lactational exposure to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice. Front Neurosci. 10:228. 10.3389/fnins.2016.00228 [PMC free article: PMC4891355] [PubMed: 27375407] [CrossRef]
  58. Scheil V, Kohler HR. 2009. Influence of nickel chloride, chlorpyrifos, and imidacloprid in combination with different temperatures on the embryogenesis of the zebrafish Danio rerio. Arch Environ Contam Toxicol. 56(2):238–243. 10.1007/s00244-008-9192-8 [PubMed: 18661094] [CrossRef]
  59. Senyildiz M, Kilinc A, Ozden S. 2018. Investigation of the genotoxic and cytotoxic effects of widely used neonicotinoid insecticides in HepG2 and SH-SY5Y cells. Toxicol Ind Health. 34(6):375–383. 10.1177/0748233718762609 [PubMed: 29591886] [CrossRef]
  60. Shaw GM, Yang W, Roberts E, Kegley SE, Padula A, English PB, Carmichael SL. 2014. Early pregnancy agricultural pesticide exposures and risk of gastroschisis among offspring in the San Joaquin Valley of California. Birth Defects Res A Clin Mol Teratol. 100(9):686–694. 10.1002/bdra.23263 [PMC free article: PMC5584597] [PubMed: 24910073] [CrossRef]
  61. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, et al 2015. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int. 22(1):5–34. 10.1007/s11356-014-3470-y [PMC free article: PMC4284386] [PubMed: 25233913] [CrossRef]
  62. Skandrani D, Gaubin Y, Beau B, Murat JC, Vincent C, Croute F. 2006. Effect of selected insecticides on growth rate and stress protein expression in cultured human A549 and SH-SY5Y cells. Toxicol In Vitro. 20(8):1378–1386. 10.1016/j.tiv.2006.06.001 [PubMed: 16884889] [CrossRef]
  63. Sugiyama C, Kotake Y, Yamaguchi M, Umeda K, Tsuyama Y, Sanoh S, Okuda K, Ohta S. 2015. Development of a simple measurement method for GluR2 protein expression as an index of neuronal vulnerability. Toxicol Rep. 2:450–460. 10.1016/j.toxrep.2014.12.014 [PMC free article: PMC5598506] [PubMed: 28962381] [CrossRef]
  64. Tan J, Galligan JJ, Hollingworth RM. 2007. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons. Neurotoxicology. 28(4):829–842. 10.1016/j.neuro.2007.04.002 [PubMed: 17561262] [CrossRef]
  65. Tanaka T. 2012a. Effects of maternal clothianidin exposure on behavioral development in F(1) generation mice. Toxicol Ind Health. 28(8):697–707. 10.1177/0748233711422726 [PubMed: 22025502] [CrossRef]
  66. Tanaka T. 2012b. Reproductive and neurobehavioral effects of clothianidin administered to mice in the diet. Birth Defects Res B Dev Reprod Toxicol. 95(2):151–159. 10.1002/bdrb.20349 [PubMed: 22311678] [CrossRef]
  67. Tennekes HA, Sanchez-Bayo F. 2011. Time-dependent toxicity of neonicotinoids and other toxicants: Implications for a new approach to risk assessment. J Environment Analytic Toxicol. S4:001.
  68. Tomizawa M, Casida JE. 1999. Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors. Br J Pharmacol. 127(1):115–122. 10.1038/sj.bjp.0702526 [PMC free article: PMC1566001] [PubMed: 10369463] [CrossRef]
  69. Tomizawa M, Casida JE. 2000. Imidacloprid, thiacloprid, and their imine derivatives up-regulate the alpha 4 beta 2 nicotinic acetylcholine receptor in M10 cells. Toxicol Appl Pharmacol. 169(1):114–120. 10.1006/taap.2000.9057 [PubMed: 11076703] [CrossRef]
  70. Tomizawa M, Cowan A, Casida JE. 2001. Analgesic and toxic effects of neonicotinoid insecticides in mice. Toxicol Appl Pharmacol. 177(1):77–83. 10.1006/taap.2001.9292 [PubMed: 11708903] [CrossRef]
  71. U.S. Department of Agriculture (USDA). 2014. Pesticide Data Program—Annual Summary, Calendar Year 2013.
  72. U.S. Food and Drug Administration (FDA).2016. Pesticide Monitoring Program: Fiscal Year 2012 Pesticide Report. Food and Drug Administration.https://www​.fda.gov/downloads​/Food/FoodborneIllnessContaminants​/Pesticides/UCM432758.pdf. [Accessed: 28 April 2017]
  73. Van der Sluijs JP, Amaral-Rogers V, Belzunces LP, Bijleveld van Lexmond MFIJ, Bonmatin JM, Chagnon M, Downs CA, Furlan L, Gibbons DW, Giorio C, et al 2015. Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ Sci Pollut Res Int. 22:148–154. 10.1007/s11356-014-3229-5 [PMC free article: PMC4284366] [PubMed: 25296936] [CrossRef]
  74. Velisek J, Stara A. 2018. Effect of thiacloprid on early life stages of common carp (Cyprinus carpio). Chemosphere. 194:481–487. 10.1016/j.chemosphere.2017.11.176 [PubMed: 29232641] [CrossRef]
  75. Whitehorn PR, O’Connor S, Wackers FL, Goulson D. 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 336(6079):351–352. 10.1126/science.1215025 [PubMed: 22461500] [CrossRef]
  76. Yang W, Carmichael SL, Roberts EM, Kegley SE, Padula AM, English PB, Shaw GM. 2014. Residential agricultural pesticide exposures and risk of neural tube defects and orofacial clefts among offspring in the San Joaquin Valley of California. Am J Epidemiol. 179(6):740–748. 10.1093/aje/kwt324 [PMC free article: PMC4271111] [PubMed: 24553680] [CrossRef]
  77. Yoneda N, Takada T, Hirano T, Yanai S, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Tabuchi Y, Hoshi N.2018. Peripubertal exposure to the neonicotinoid pesticide dinotefuran affects dopaminergic neurons and causes hyperactivity in male mice. J Vet Med Sci. 10.1292/jvms.18-0014 [PMC free article: PMC5938192] [PubMed: 29434093] [CrossRef]
Copyright Notice

This is a work of the US government and distributed under the terms of the Public Domain

Bookshelf ID: NBK563580

Views

  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (889K)

Other titles in this collection

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...