Clinical Description
Glucose transporter type 1 deficiency syndrome (Glut1 DS) usually presents as either classic Glut1 DS (~90% of affected individuals) or, more rarely, non-classic Glut1 DS (~10% of affected individuals), which comprises a broad phenotypic spectrum.
Infants with the
classic phenotype appear normal at birth following an uneventful pregnancy and delivery. Birth weight and Apgar scores are normal. Affected individuals commonly experience infantile-onset epileptic encephalopathy refractory to anticonvulsants and associated with delayed neurologic development; later deceleration of head growth and acquired microcephaly; and ataxia, dystonia, and spasticity [
Klepper et al 1999b,
De Vivo et al 2002a,
De Vivo et al 2002b,
Pons et al 2010,
Yang et al 2011].
The phenotypic spectrum designated as
non-classic Glut1 DS has expanded over the past few years as more affected individuals have been identified. Paroxysmal non-epileptic manifestations that have been reported include intermittent ataxia, choreoathetosis, dystonia, and alternating hemiplegia. Several disorders including paroxysmal choreoathetosis with spasticity (dystonia 9), paroxysmal exercise-induced dyskinesia and epilepsy (dystonia 18), atypical childhood absence epilepsy, and myoclonic astatic epilepsy are now known to be caused by Glut1 deficiency [
Chinnery 2010,
Leen et al 2010,
Yang et al 2011]. Some findings may show overlap with those seen in classic Glut1 DS.
Seizures. Seizures in classic early-onset Glut1 DS, which usually begin between age one and six months, are often the first clinical indication of brain dysfunction. In some infants, apneic episodes and abnormal episodic eye-head movements similar to opsoclonus may precede the onset of seizures [Pearson et al 2017]. Infantile focal seizures are clinically fragmented (i.e., non-generalized; typical at this age) and may include paroxysmal eye-head movements, cyanotic spells, and complex absence and atonic seizures. The electroencephalogram (EEG) may demonstrate multifocal spike discharges in infancy.
With further brain maturation, the seizures become synchronized and manifest clinically as generalized events associated with 3- to 4-Hz spike and wave discharges. Several seizure types have been described: generalized tonic or clonic, focal, myoclonic, atypical absence, atonic, and unclassified [Leary et al 2003].
The frequency of seizures varies among individuals: some experience daily events; others have only occasional seizures separated by days, weeks, or months. Seizure frequency does not correlate with phenotypic severity.
Some individuals with Glut1 DS never have a clinical seizure [von Moers et al 2002, Leary et al 2003]. About 10%-15% of cases, diagnosed thus far, never have had clinical seizures [Leen et al 2010, Pong et al 2012, Pearson et al 2013].
Speech and language impairment. Varying degrees of speech and language impairment are observed in all affected individuals.
Dysarthria is common and is accompanied by dysfluency (i.e., excessively interrupted speech).
Both receptive and expressive language skills are affected, with expressive language skills being disproportionately affected.
Intellectual disability. Varying degrees of cognitive impairment, ranging from learning disabilities to severe intellectual disability, are observed. Minimally affected individuals have estimated IQ scores in the normal range.
Social adaptive behavior is an exceptional strength. Individuals with Glut1 DS tend to be comfortable in group and school settings and interact well with others. Autistic spectrum disorders appear to be underrepresented in those with Glut1 DS.
Movement disorders. A complex movement disorder is commonly seen and is characterized by ataxia, dystonia, and chorea that may be continuous, paroxysmal, or continual with fluctuations determined by environmental stressors [Leen et al 2010, Pons et al 2010, Pearson et al 2013, Alter et al 2015]. Often, paroxysmal worsening occurs before meals, during fasting, or with infectious stress.
Pons et al [2010] described the frequency of abnormal movements in 57 persons with Glut1 DS. Clinical findings included the following:
Gait disturbance (89%), the most frequent being ataxia and spasticity together or ataxia alone
Action limb dystonia (86%)
Mild chorea (75%)
Cerebellar action tremor (70%)
Non-epileptic paroxysmal events (28%)
Dyspraxia (21%)
Myoclonus (16%)
The 40 individuals on a ketogenic diet had less severe gait disturbances, but more complex movement disorders than those on a conventional diet [Pons et al 2010], an observation suggesting that the extrapyramidal and cerebellar findings are more apparent in the milder phenotypes.
Paroxysmal movement disorders. Paroxysmal exercise-induced dyskinesia and epilepsy (previously known as dystonia 18 [DYT18] [Suls et al 2008, Weber et al 2008, Zorzi et al 2008, Urbizu et al 2010]) and paroxysmal choreoathetosis with spasticity (previously known as dystonia 9 [DYT9] [Weber et al 2011]) are now recognized to be part of the phenotypic spectrum of Glut1 DS.
Paroxysmal exercise-induced dyskinesia and epilepsy differs clinically from classic Glut1 DS in that most affected individuals appear to have a normal interictal neurologic examination and a normal head circumference, and experience exercise-induced dyskinesias and later-onset seizures [
Suls et al 2008,
Weber et al 2008,
Zorzi et al 2008,
Urbizu et al 2010]. The CSF glucose concentrations tend to be higher (41-52 mg/dL) than those in classic Glut1 DS [
De Vivo & Wang 2008].
The two families with
paroxysmal choreoathetosis with spasticity had paroxysmal, mainly exercise-induced dyskinesia with onset between ages one and 15 years [
Weber et al 2011] caused by heterozygous
SLC2A1 pathogenic variants (
p.Arg212Cys and
p.Arg126Cys). Dyskinesia triggers included prolonged exercise, anxiety, and emotional stress. The dyskinesias decreased in frequency or stopped later in life. Other associated findings included progressive spastic paraparesis with onset in early adulthood, mild gait ataxia, mild-to-moderate cognitive impairment, and epileptic seizures.
Other paroxysmal events have been reported [Overweg-Plandsoen et al 2003, Pérez-Dueñas et al 2009, Pons et al 2010, Urbizu et al 2010]. It is unclear whether these events represent epileptic or non-epileptic phenomena. These neurologic signs, which generally fluctuate and may be influenced by factors such as fasting or fatigue, include the following:
Microcephaly. Thirty-two of 58 persons with Glut1 DS had microcephaly ranging from mild (<1 SD below the mean in 14 patients) to moderate (<2 SD below the mean in 10) to severe (<3 SD below the mean in 8).
Additional findings. In addition to the low CSF-to-blood glucose ratio and decreased 3-O-methyl-D-glucose uptake in erythrocytes, the following findings may also be observed in individuals with this disorder:
Positron emission tomography (PET). Cerebral fluoro-deoxy-glucose PET findings are distinctive with diffuse hypometabolism of the cerebral cortex and regional hypometabolism of the cerebellum and thalamus. Basal ganglia metabolism appears relatively preserved. This distinctive PET signature appears in early infancy and persists into adulthood regardless of disease severity or therapy with a ketogenic diet [
Pascual et al 2002,
Akman et al 2015]. The sensitivity and specificity of PET in the diagnosis of Glut1 DS have not been established.
Pathophysiology
The disease manifestations can be explained in terms of current understanding of glucose transport in the brain: glucose is the principal fuel source for brain metabolism; the glucose transporter, Glut1 (solute carrier family 2, facilitated glucose transporter 1), the protein product of SLC2A1, is the fundamental vehicle that facilitates glucose entry into the brain. The cerebral metabolic rate for glucose (which is low during fetal development) increases linearly after birth, peaks around age three years, remains high for the remainder of the first decade of life, and declines gradually during the second decade of life to the rate of glucose utilization seen in early adulthood. It thus appears that the risk for clinical manifestations during fetal development is low and then rises throughout infancy and early childhood.
Human and animal data suggest that the margin of safety for glucose transport across the blood-brain barrier to meet the needs of brain metabolism and cerebral function is narrow. A milder clinical phenotype with intermittent symptoms (epilepsy, dyskinesias, and ataxia) may be predicted with 25%-35% reduction in Glut1 transporter function [Rotstein et al 2010]; a more severe phenotype results from greater reductions (perhaps 40%-75%) [Yang et al 2011].
The erythrocyte glucose uptake assay is a functional surrogate measure of residual Glut1 transporter function. Individuals displaying the classic phenotype have on average a 50% uptake assay, resulting from pathogenic loss-of-function variants that result in 50% reduction in Glut1 activity. Absence of Glut1 transporter expression is embryonic lethal [Wang et al 2006].
Genotype-Phenotype Correlations
A correlation between the specific type of SLC2A1 pathogenic variant and the clinical severity has been noted [Leen et al 2010, Yang et al 2011]. A clinical scoring system developed to classify phenotypic severity for mitochondrial diseases and Glut1 DS [Kaufmann et al 2004] has been used to correlate phenotype with other markers including genotype [Levy et al 2010, Rotstein et al 2010, Yang et al 2011].
Fifty-three affected individuals were stratified clinically according to the Columbia Neurological Score (CNS) into four groups [Yang et al 2011]:
Minimal (CNS 70-76)
Mild (CNS 60-69)
Moderate (CNS 50-59)
Severe (CNS 40-49)
Comparison of the type of SLC2A1 heterozygous pathogenic variants among the four groups revealed the following:
Missense variants occurred predominantly in the mild and moderate clinical categories.
Splice site and nonsense variants and insertions, deletions, and exon deletions occurred almost exclusively in the moderate and severe clinical categories.
Complete gene deletions clustered in the severe clinical category.
A significant inverse correlation (R2 = 0.94) was observed between the median values of the erythrocyte 3-O-methyl-D-glucose uptake and the clinical severity as determined by the Columbia Neurological Score. Thus, the erythrocyte glucose uptake is an indication of the functional effect of the pathogenic variant.
Many pathogenic variants have been identified [Wang et al 2005, Pascual et al 2008, Wang et al 2008, Leen et al 2010, Yang et al 2011]; several mutation hot spots and gene regions have been detected: