C-terminal catalytic domain of the oxygenase alpha subunit of an uncharacterized subgroup of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases
C-terminal catalytic domain of the oxygenase alpha subunit of a functionally uncharacterized subgroup of the Rieske-type non-heme iron aromatic ring-hydroxylating oxygenase (RHO) family. RHOs, also known as aromatic ring hydroxylating dioxygenases, utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. This group contains two putative Parvibaculum lavamentivorans (T) DS-1 oxygenases; this organism catabolizes commercial linear alkylbenzenesulfonate surfactant (LAS) and other surfactants, by a pathway involving an undefined 'omega-oxygenation' and beta-oxidation of the LAS side chain. The nature of the LAS-oxygenase is unknown but is likely a multicomponent system. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket.