Headache disorders are the most frequent cause of consultation in primary care and neurology practice; it prompts many visits to internists; ear, nose, and throat specialists; ophthalmologists; dentists; psychologists; and proponents of a wide variety of complementary and alternative medical practices (WHO 2011). Headache is a common presenting symptom in emergency departments. The consequences of recurring migraine include pain, disability, diminished productivity, financial losses, and impaired quality of life. Therefore, although headache rarely signals serious underlying illness, its causal association with personal burdens of pain, disability, and diminished quality of life makes it a major contributor to ill health.
Definitions
Migraine
Migraine is a disorder commonly beginning in puberty and often lasting throughout life. Episodic attacks have a frequency of once or twice a month on average, but this may vary widely, subject to lifestyle and environmental factors. In women, prevalence is higher because of a hormonally-driven association with menstruation. Headache, nausea, and photophobia are the most characteristic attack features. In some attacks, about 10 percent overall, and in only one-third of people with migraine, headache is preceded by aura symptoms, most commonly visual. The headache itself, lasting for hours to two to three days, is typically moderate or severe and unilateral, pulsating, and aggravated by routine physical activity (International Headache Society 2013). Chronic migraine, with headache attacks on 15 or more days per month and/or loss of episodicity, is a particularly disabling form (Natoli and others 2010).
Tension-Type Headache
TTH is a highly variable disorder, commonly beginning in the teenage years and reaching peak levels for people in their 30s. It lacks the specific features and associated symptoms of migraine, with headache usually mild or moderate, generalized, and described as pressure or tightness (International Headache Society 2013).
Medication-Overuse Headache
MOH is earning recognition as a disorder of major public health importance for three reasons: it is an attribute of migraine or (less often) TTH; it is highly disabling at individual levels; and it is iatrogenic and avoidable. MOH affects between 1 and 2 percent of the general population (Westergaard and others 2014), up to 67 percent of the chronic headache population, and 30–50 percent of patients seen in specialized headache centers (Evers, Jensen, and European Federation of Neurological Societies 2011). The cause is chronic excessive use of medications taken initially to treat episodic headache (Diener and Limmroth 2004). The overuse of all such medications is associated with this problem, although the mechanism through which it develops undoubtedly varies among drug classes (Steiner and others 2007).
Interventions
Worldwide, at least 50 percent of headaches are self-treated, even in high-income countries (HICs) (WHO 2011). Professional health care, when needed, should be provided in primary care settings for the majority of cases (WHO 2011), and guidelines for the management of headache disorders in these settings are available (Steiner and others 2007). History and examination should take due note of warning features that might suggest an underlying condition (Steiner and others 2007).
Many instruments, including the HALT questionnaire, are available to assess the burden of headache symptoms on individual patients. (Steiner and Martelletti 2007). Realistic goals of management include understanding that primary headaches cannot be cured but can be managed effectively. We focus our further treatment discussions on migraine.
Self-Management
Stress is a common predisposing factor for migraine. Improving the ability to cope is an alternative treatment approach, but the role of psychological therapies in migraine management is unclear. Most research has focused on high-end intensive treatment of individual cases of disabling and refractory headache, which has limited relevance to public health. Yet there is potential for low-cost delivery of group behavioral training, and even some very limited evidence of benefit (Mérelle and others 2008). This approach could be further explored in LMICs.
Obesity is a risk factor for migraine, especially for frequent migraine (Evans and others 2012). Regular exercise and keeping fit can be beneficial. A study among obese adolescents with migraine found a significant improvement in headache in those who participated in a 12-month weight-loss program (Evans and others 2012).
Pharmacological Interventions
Guidelines recommend a stepped-care approach commencing with acute treatment using simple analgesics (aspirin or one of several other nonsteroidal anti-inflammatory drugs) (Steiner and others 2007). Good evidence demonstrates the efficacy and tolerability of aspirin (Kirthi, Derry and Moore 2013), ibuprofen (Rabbie, Derry and Moore 2013), and diclofenac potassium (Derry, Rabbie, and Moore 2013). The most desirable outcome of acute treatment is complete relief from pain within two hours, without recurrence or need for further medication and without adverse events. This outcome is not commonly experienced with simple analgesics alone.
The more easily achievable outcome referred to as sustained headache relief (SHR) is defined as reduction of pain to no worse than mild within two hours of treatment, also without recurrence or need for further medication. Mild pain is assumed not to be associated with disability, and SHR implies full functional recovery when functional impairment was present initially. Aspirin alone provides SHR in an estimated 39 percent of users (Kirthi, Derry and Moore 2013); this is a modest effect in the sense that it leaves 61 percent without this benefit but at the same time is among the most cost-efficient interventions to improve public health (Linde, Steiner, and Chisholm 2015). Aspirin has the advantages of being universally available and on the WHO essential medicines list (WHO 2013). Ibuprofen provides SHR in a somewhat higher estimated proportion of users (45 percent) (Rabbie, Derry, and Moore 2013), at variable but not always higher cost. Diclofenac is considerably more costly, without significantly greater efficacy (Derry, Rabbie, and Moore 2013). It is argued that the anti-inflammatory effect is important in acute migraine treatment, and paracetamol is therefore rather less effective than aspirin (at the same cost) or other nonsteroidal anti-inflammatory drugs (Derry and Moore 2013; Steiner and others 2007).
Antiemetics should also be used in acute treatment, and should not be restricted to patients who are vomiting or likely to vomit. Nausea is one of the most aversive and disabling symptoms of a migraine attack and should be treated appropriately (Silberstein and others 2012). Gastric stasis is a feature of migraine; prokinetic antiemetics, such as domperidone or metoclopramide, enhance gastric emptying and promote the efficacy of oral analgesics in migraine.
The usual second step in management is still acute treatment, with the substitution or addition of specific anti-migraine therapy (Steiner and others 2007). Ergotamine tartrate remains in use in many countries (WHO 2011), but it is poorly bioavailable, is not highly effective, and has potential side effects. Of the triptan class of agents–which are specific anti-migraine medications–seven are available in many countries. They differ somewhat in their pharmacokinetics, and they are not identical in efficacy; however, the differences between them are small when set against the up to tenfold price differences between sumatriptan (available in generic versions) and the other six. Sumatriptan is available in four formulations (oral, intranasal, rectal, and subcutaneous). Sumatriptan 50 mg orally provides SHR in an estimated 35 percent of users (Derry, Derry, and Moore 2012), much the same as aspirin; however, it has a different mode of action, and responses to each drug are independent. When sumatriptan is used on its own, its cost-effectiveness is at least two orders of magnitude lower than that of aspirin (Linde, Steiner, and Chisholm 2015); it is usually reserved as a second-line treatment for those who fail to respond to first-line treatments (Steiner and others 2007). In adults and children, regular use of acute medications at high frequency (more than two days per week) risks the development of MOH.
Prophylactic medications are used in step three to reduce the number of attacks occurring when acute therapy is inadequate (Steiner and others 2007). There is adequate or good evidence of efficacy and tolerability for propranolol (Linde and others 2013b), amitriptyline (Dodick and others 2009), valproate (as sodium valproate or valproic acid) (Linde and others 2013b), and topiramate (Diener and others 2004; Linde and others 2013a). To assess outcome as migraine attacks averted requires comparison with an untreated base line, which is available for propranolol (28 percent) (Linde, Steiner, and Chisholm 2015), amitriptyline (44 percent) (Linde, Steiner, and Chisholm 2015). In an American Academy of Neurology review, divalproex sodium, sodium valproate, topiramate, metoprolol, propranolol, and timolol were found to be effective for migraine prevention (Silberstein and others 2012). In terms of cost, propranolol and amitriptyline are similar and very low, and topiramate is much higher; amitriptyline might be the choice of prophylactic drug when resource conservation is the key consideration (Linde, Steiner, and Chisholm 2015). However, the mode of action of these medications in migraine is unknown, and failure of response to one does not predict the failure of others (Steiner and others 2007), which might be tried when amitriptyline is ineffective and resources permit.
Alternative Therapies
Acupuncture and physical therapies, such as spinal manipulation, requiring direct one-to-one therapist-patient interaction, are highly resource intensive, and have questionable efficacy (Bronfort and others 2004; Linde and others 2009) to justify their recommendation. Even the limited benefits seen in clinical trials may not be replicated in the real world, where therapists operate under time constraints.
Public Education Programs
Public education programs can help to improve migraine outcomes. Lifestyle factors may predispose people to or aggravate migraine. Although the evidence is poor that modifying lifestyle is an effective way of controlling migraine, avoidance of trigger factors is a logical stratagem (Steiner and others 2007).
Public education about the increasing risk of migraine with obesity (Bronfort and others 2004) may achieve some benefits, because, unlike many other ill-health consequences of obesity, headache is experienced in the present. Public education also appears to offer the most effective means of controlling a potential epidemic of MOH as a consequence of mistreated migraine. Recent evidence from the Global Campaign against Headache (Mbewe and others 2015) suggests this may be a particular problem in LMICs where medications are relatively more affordable and available than health care. The initial effectiveness of simple analgesics encourages their further use, which is not problematic at low frequency. With increasing frequency comes greater reliance and increasing risk of MOH. Once MOH is established, medication overuse is likely to escalate.
The incremental health benefits obtained in LMICs from adding educational programs to the use of over-the-counter and prescription medications appear to be achievable at acceptable incremental costs (Linde, Steiner, and Chisholm 2015). Pharmacists can be a key source of information to the public about headache disorders, treatments, and the dangers of medication overuse, but only if this role is explicitly recognized in their reimbursement, and only if their advice is sought. Further, the cost-effectiveness of treatments may increase with public education programs to improve adherence to treatments (Linde, Steiner, and Chisholm 2015).
Interventions to Optimize Health Care Delivery
In a global survey, one-third of responding countries recommended improved organization and delivery of health care for headache so that care would be efficient and equitable (WHO 2011). The organization of services to achieve this goal is clearly a challenge, and no single solution may be appropriate in all settings. Most patients do not require specialist expertise or special investigations (Steiner and others 2007), and the three-tier service model developed by the Global Campaign against Headache for Europe (Steiner and others 2011) is highly adaptable. This model had been used as part of demonstration projects to structure headache services in China (Yu and others 2014), and in Sverdlovsk Oblast in the Russian Federation (Lebedeva and others 2013). Using the model, about 90 percent of patients are managed in first-level care, usually but not necessarily by physicians; 1 percent require specialist care that is necessarily hospital-based. The intermediate 9 percent do not require specialist care, but may have diagnostic or management difficulties that would benefit from second-level care. Provision of this level of care depends on resources and local health service organizations. Each level must maintain a gatekeeper role to higher levels to make the model work.
Countries that have invested in headache services have, paradoxically, generally done so by setting up specialist headache clinics. Worldwide, the proportion of headache patients seen by specialists is 10 percent (WHO 2011), indicating considerable scope for resource reallocation for the benefit of more patients if the levels below were better utilized. Pharmacists need to be formally integrated into health care systems.
Training Health Care Providers
The ability of first-level services to deliver effective care depends on the providers—physicians, clinical officers, or nurses—having the basic knowledge required. Evidence clearly indicates deficiencies, and better professional education ranked far above all other proposals for change in WHO’s global survey (WHO 2011). Training first-level doctors in the management of migraine is likely to improve outcomes, as well as to increase the cost-effectiveness of prescription medications (Linde, Steiner, and Chisholm 2015). Furthermore, such training might reduce waste, through reductions in the high rates of unnecessary investigations to support diagnosis (WHO 2011).
Cost-Effectiveness of Interventions
There is a lack of nationally conducted cost-effectiveness studies to inform resource allocation decisions for headache disorders in LMICs. However, a recent cost-effectiveness modeling analysis of migraine treatment was carried out for four countries–China (an upper-middle-income country), India (a lower-middle-income country), Russia (an HIC), and Zambia (a lower-middle-income country). The analysis concluded that acute treatment with aspirin generated a year of healthy life for less than US$100 (Linde, Steiner, and Chisholm 2015), making it among the most efficient interventions to improve population health. Cost-effectiveness analysis was not carried out for paracetamol specifically, because the only evidence of SHR came from 42 highly atypical patients in the United States (Linde, Steiner, and Chisholm 2015). When sumatriptan is used on its own for acute management of migraine, its cost-effectiveness is at least two orders of magnitude less favorable than that of aspirin, which indicates why sumatriptan is reserved as a second-line treatment for those who fail to respond to first-line treatments (Steiner and others 2007).
Prophylactic medications are less cost-effective than acute therapy with simple analgesics, but considerably more cost-effective than acute therapy with the combination of analgesics and triptans (when needed), but this may be true only if prophylactics are reserved for those with three or more attacks per month (Linde, Steiner, and Chisholm 2015). The addition of educational programs (posters and leaflets in pharmacies) for the use of over-the-counter and prescription medications appears to increase population health gain at an acceptable incremental cost, as does training providers (Linde, Steiner, and Chisholm 2015).