U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024.

Cover of GeneReviews®

GeneReviews® [Internet].

Show details

Table 1.

Molecular Genetic Testing Used in Pendred Syndrome (PDS) and Nonsyndromic Enlarged Vestibular Aqueduct (NSEVA)

Gene 1, 2Proportion of PDS and NSEVA Attributed to Pathogenic Variants in GeneProportion of Pathogenic Variants 3 Detectable by Method
PDSNSEVASequence analysis 4Gene-targeted deletion/duplication analysis 5
FOXI1 None described<1% 62/2 6Unknown
KCNJ10 None described<1% 72/2 7Unknown
SLC26A4 ~90% 850%-90% 8~90%~10% 9
UnknownUnknown~50%NA
1.

Genes are listed alphabetically.

2.
3.

See Molecular Genetics for information on variants detected in this gene.

4.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

5.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include a range of techniques such as quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

6.

In two families, persons with NSEVA had a heterozygous pathogenic variant in both SLC26A4 and FOXI1 [Yang et al 2007].

7.

In two families, persons with NSEVA had a heterozygous pathogenic variant in both KCNJ10 and SLC26A4 [Yang et al 2009].

8.

The proportion of PDS and NSEVA attributable to SLC26A4 varies by ascertainment, inheritance, and ethnicity. In affected individuals ascertained for inner ear malformations (specifically enlarged vestibular aqueduct with or without cochlear hypoplasia), the proportion of cases attributable to SLC26A4 is ~40%-50% in the European-American population and higher in multiplex families and Asian populations [Campbell et al 2001, Tsukamoto et al 2003, Berrettini et al 2005, Huang et al 2011, Chattaraj et al 2017, Rose et al 2017].

9.

Single-exon and multiexon SLC26A4 deletions have been reported [Pera et al 2008].

From: Pendred Syndrome / Nonsyndromic Enlarged Vestibular Aqueduct

Copyright © 1993-2024, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

GeneReviews® chapters are owned by the University of Washington. Permission is hereby granted to reproduce, distribute, and translate copies of content materials for noncommercial research purposes only, provided that (i) credit for source (http://www.genereviews.org/) and copyright (© 1993-2024 University of Washington) are included with each copy; (ii) a link to the original material is provided whenever the material is published elsewhere on the Web; and (iii) reproducers, distributors, and/or translators comply with the GeneReviews® Copyright Notice and Usage Disclaimer. No further modifications are allowed. For clarity, excerpts of GeneReviews chapters for use in lab reports and clinic notes are a permitted use.

For more information, see the GeneReviews® Copyright Notice and Usage Disclaimer.

For questions regarding permissions or whether a specified use is allowed, contact: ude.wu@tssamda.

Views

  • Cite this Page
  • PDF version of this page (494K)
  • Disable Glossary Links

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Similar articles in PubMed

See reviews...See all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...