Third immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the Constant 2 (C2)-set of IgSF domains
The members here are composed of the third immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. This group belongs to the C2-set of IgSF domains, having A, B, and E strands in one beta-sheet and A', G, F, C, and C' in the other. Unlike other Ig domain sets, the C2-set lacks the D strand.