Skip to main page content
Accesskeys
  • Page of 1
  1. Wu JY, London JA, Zecevic D, Höpp HP, Cohen LB, Xiao C. Optical monitoring of activity of many neurons in invertebrate ganglia during behaviors. Experientia. 1988 May 15;44(5):369-76. doi: 10.1007/bf01940529. Review. PubMed PMID: 3286282.
  2. Zecević D, Wu JY, Cohen LB, London JA, Höpp HP, Falk CX. Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex. J Neurosci. 1989 Oct;9(10):3681-9. PubMed PMID: 2795148.
  3. Cohen L, Wu JY. One neuron, many units?. Nature. 1990 Jul 12;346(6280):108-9. doi: 10.1038/346108a0. PubMed PMID: 2366869.
  4. Morton DW, Chiel HJ, Cohen LB, Wu JY. Optical methods can be utilized to map the location and activity of putative motor neurons and interneurons during rhythmic patterns of activity in the buccal ganglion of Aplysia. Brain Res. 1991 Nov 8;564(1):45-55. doi: 10.1016/0006-8993(91)91350-a. PubMed PMID: 1777822.
  5. Loew LM, Cohen LB, Dix J, Fluhler EN, Montana V, Salama G, Wu JY. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol. 1992 Oct;130(1):1-10. doi: 10.1007/bf00233734. PubMed PMID: 1469705.
  6. Wu JY, Falk CX, Cohen L, Tsau Y, Zecevic D. Optical measurement of action potential activity in invertebrate ganglia. Jpn J Physiol. 1993;43 Suppl 1:S21-9. PubMed PMID: 8271496.
  7. Falk CX, Wu JY, Cohen LB, Tang AC. Nonuniform expression of habituation in the activity of distinct classes of neurons in the Aplysia abdominal ganglion. J Neurosci. 1993 Sep;13(9):4072-81. PubMed PMID: 8366360.
  8. Wu JY, Cohen LB, Falk CX. Neuronal activity during different behaviors in Aplysia: a distributed organization?. Science. 1994 Feb 11;263(5148):820-3. doi: 10.1126/science.8303300. PubMed PMID: 8303300.
  9. Wu JY, Tsau Y, Hopp HP, Cohen LB, Tang AC, Falk CX. Consistency in nervous systems: trial-to-trial and animal-to-animal variations in the responses to repeated applications of a sensory stimulus in Aplysia. J Neurosci. 1994 Mar;14(3 Pt 1):1366-84. PubMed PMID: 8120632.
  10. Tsau Y, Wu JY, Höpp HP, Cohen LB, Schiminovich D, Falk CX. Distributed aspects of the response to siphon touch in Aplysia: spread of stimulus information and cross-correlation analysis. J Neurosci. 1994 Jul;14(7):4167-84. PubMed PMID: 8027769.
  11. Höpp HP, Falk CX, Cohen LB, Wu JY, Cohen AI. Effect of feedback from peripheral movements on neuron activity in the aplysia abdominal ganglion. Eur J Neurosci. 1996 Sep;8(9):1865-72. doi: 10.1111/j.1460-9568.1996.tb01330.x. PubMed PMID: 8921277.
  12. Wu JY, Lam YW, Falk CX, Cohen LB, Fang J, Loew L, Prechtl JC, Kleinfeld D, Tsau Y. Voltage-sensitive dyes for monitoring multineuronal activity in the intact central nervous system. Histochem J. 1998 Mar;30(3):169-87. doi: 10.1023/a:1003295319615. Review. PubMed PMID: 10188925; NIHMSID:NIHMS44734.
  13. Tsau Y, Guan L, Wu JY. Initiation of spontaneous epileptiform activity in the neocortical slice. J Neurophysiol. 1998 Aug;80(2):978-82. doi: 10.1152/jn.1998.80.2.978. PubMed PMID: 9705483; NIHMSID:NIHMS44732.
  14. Wu JY, Guan L, Tsau Y. Propagating activation during oscillations and evoked responses in neocortical slices. J Neurosci. 1999 Jun 15;19(12):5005-15. PubMed PMID: 10366633; NIHMSID:NIHMS44731.
  15. Tsau Y, Guan L, Wu JY. Epileptiform activity can be initiated in various neocortical layers: an optical imaging study. J Neurophysiol. 1999 Oct;82(4):1965-73. doi: 10.1152/jn.1999.82.4.1965. PubMed PMID: 10515986; NIHMSID:NIHMS44730.
  16. Wu JY, Guan L, Bai L, Yang Q. Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. J Neurophysiol. 2001 Nov;86(5):2461-74. doi: 10.1152/jn.2001.86.5.2461. PubMed PMID: 11698535; NIHMSID:NIHMS44729.
  17. Jin W, Zhang RJ, Wu JY. Voltage-sensitive dye imaging of population neuronal activity in cortical tissue. J Neurosci Methods. 2002 Mar 30;115(1):13-27. doi: 10.1016/s0165-0270(01)00511-8. PubMed PMID: 11897360; NIHMSID:NIHMS44728.
  18. Bao W, Wu JY. Propagating wave and irregular dynamics: spatiotemporal patterns of cholinergic theta oscillations in neocortex in vitro. J Neurophysiol. 2003 Jul;90(1):333-41. doi: 10.1152/jn.00715.2002. Epub 2003 Feb 26. PubMed PMID: 12612003; PubMed Central PMCID: PMC2941800.
  19. Ma HT, Wu CH, Wu JY. Initiation of spontaneous epileptiform events in the rat neocortex in vivo. J Neurophysiol. 2004 Feb;91(2):934-45. doi: 10.1152/jn.00274.2003. Epub 2003 Oct 8. PubMed PMID: 14534285; PubMed Central PMCID: PMC2909741.
  20. Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu JY. Spiral waves in disinhibited mammalian neocortex. J Neurosci. 2004 Nov 3;24(44):9897-902. doi: 10.1523/JNEUROSCI.2705-04.2004. PubMed PMID: 15525774; PubMed Central PMCID: PMC4413915.
  21. Bolea S, Sanchez-Andres JV, Huang X, Wu JY. Initiation and propagation of neuronal coactivation in the developing hippocampus. J Neurophysiol. 2006 Jan;95(1):552-61. doi: 10.1152/jn.00321.2005. Epub 2005 Sep 21. PubMed PMID: 16177178; NIHMSID:NIHMS44723.
  22. Bai L, Huang X, Yang Q, Wu JY. Spatiotemporal patterns of an evoked network oscillation in neocortical slices: coupled local oscillators. J Neurophysiol. 2006 Nov;96(5):2528-38. doi: 10.1152/jn.00645.2006. Epub 2006 Jul 26. PubMed PMID: 16870836; PubMed Central PMCID: PMC4415382.
  23. Schiff SJ, Huang X, Wu JY. Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. Phys Rev Lett. 2007 Apr 27;98(17):178102. doi: 10.1103/PhysRevLett.98.178102. Epub 2007 Apr 25. PubMed PMID: 17501537; PubMed Central PMCID: PMC2039901.
  24. Arai Y, Mentis GZ, Wu JY, O'Donovan MJ. Ventrolateral origin of each cycle of rhythmic activity generated by the spinal cord of the chick embryo. PLoS One. 2007 May 2;2(5):e417. doi: 10.1371/journal.pone.0000417. PubMed PMID: 17479162; PubMed Central PMCID: PMC1855078.
  25. Lippert MT, Takagaki K, Xu W, Huang X, Wu JY. Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J Neurophysiol. 2007 Jul;98(1):502-12. doi: 10.1152/jn.01169.2006. Epub 2007 May 9. PubMed PMID: 17493915; PubMed Central PMCID: PMC2855339.
  26. Xu W, Huang X, Takagaki K, Wu JY. Compression and reflection of visually evoked cortical waves. Neuron. 2007 Jul 5;55(1):119-29. doi: 10.1016/j.neuron.2007.06.016. PubMed PMID: 17610821; PubMed Central PMCID: PMC1988694.
  27. Takagaki K, Zhang C, Wu JY, Lippert MT. Crossmodal propagation of sensory-evoked and spontaneous activity in the rat neocortex. Neurosci Lett. 2008 Feb 6;431(3):191-6. doi: 10.1016/j.neulet.2007.11.069. Epub 2007 Dec 15. PubMed PMID: 18178313; PubMed Central PMCID: PMC2292672.
  28. Wu JY, Xiaoying Huang, Chuan Zhang. Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist. 2008 Oct;14(5):487-502. doi: 10.1177/1073858408317066. Review. PubMed PMID: 18997124; PubMed Central PMCID: PMC2679998.
  29. Wu JY, Cohen LB. Now single spines: monitoring neuronal membrane potential with submicron and submillisecond resolution. J Physiol. 2010 Apr 15;588(Pt 8):1191-2. doi: 10.1113/jphysiol.2010.189589. PubMed PMID: 20395470; PubMed Central PMCID: PMC2872725.
  30. Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu JY. Spiral wave dynamics in neocortex. Neuron. 2010 Dec 9;68(5):978-990. doi: 10.1016/j.neuron.2010.11.007. PubMed PMID: 21145009; PubMed Central PMCID: PMC4433058.
  31. Takagaki K, Zhang C, Wu JY, Ohl FW. Flow detection of propagating waves with temporospatial correlation of activity. J Neurosci Methods. 2011 Sep 15;200(2):207-18. doi: 10.1016/j.jneumeth.2011.05.023. Epub 2011 Jun 2. PubMed PMID: 21664934; PubMed Central PMCID: PMC3179389.
  32. Zheng K, An JJ, Yang F, Xu W, Xu ZQ, Wu J, Hökfelt TG, Fisahn A, Xu B, Lu B. TrkB signaling in parvalbumin-positive interneurons is critical for gamma-band network synchronization in hippocampus. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17201-6. doi: 10.1073/pnas.1114241108. Epub 2011 Sep 26. PubMed PMID: 21949401; PubMed Central PMCID: PMC3193255.
  33. Gao X, Xu W, Wang Z, Takagaki K, Li B, Wu JY. Interactions between two propagating waves in rat visual cortex. Neuroscience. 2012 Aug 2;216:57-69. doi: 10.1016/j.neuroscience.2012.04.062. Epub 2012 May 1. PubMed PMID: 22561730; PubMed Central PMCID: PMC4401468.
  34. Xu W, Wolff BS, Wu JY. Low-intensity electric fields induce two distinct response components in neocortical neuronal populations. J Neurophysiol. 2014 Nov 15;112(10):2446-56. doi: 10.1152/jn.00740.2013. Epub 2014 Aug 13. PubMed PMID: 25122710; PubMed Central PMCID: PMC4315449.
  35. Liang J, Xu W, Geng X, Wu JY. Monitoring Population Membrane Potential Signals from Neocortex. Adv Exp Med Biol. 2015;859:171-96. doi: 10.1007/978-3-319-17641-3_7. Review. PubMed PMID: 26238053.
  36. Rozeboom AM, Queenan BN, Partridge JG, Farnham C, Wu JY, Vicini S, Pak DT. Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity. Neurobiol Learn Mem. 2015 Nov;125:265-73. doi: 10.1016/j.nlm.2015.10.005. Epub 2015 Oct 19. PubMed PMID: 26477834.
  37. Baker B, Gao X, Wolff BS, Jin L, Cohen LB, Bleau CX, Wu JY. In Vivo Voltage-Sensitive Dye Imaging of Mammalian Cortex Using "Blue" Dyes. Cold Spring Harb Protoc. 2015 Nov 2;2015(11):1000-2. doi: 10.1101/pdb.prot089359. PubMed PMID: 26527769.
  38. Baker B, Gao X, Wolff BS, Jin L, Cohen LB, Bleau CX, Wu JY. Voltage-Sensitive Dye Imaging of Population Signals in Brain Slices. Cold Spring Harb Protoc. 2015 Nov 2;2015(11):995-9. doi: 10.1101/pdb.prot089342. PubMed PMID: 26527768.
  39. Vitantonio D, Xu W, Geng X, Wolff BS, Takagaki K, Motamedi GK, Wu JY. Emergence of dominant initiation sites for interictal spikes in rat neocortex. J Neurophysiol. 2015 Dec;114(6):3315-25. doi: 10.1152/jn.00471.2014. Epub 2015 Oct 7. PubMed PMID: 26445866; PubMed Central PMCID: PMC4868378.
  40. Huang Y, Yoon K, Ko H, Jiao S, Ito W, Wu JY, Yung WH, Lu B, Morozov A. 5-HT3a Receptors Modulate Hippocampal Gamma Oscillations by Regulating Synchrony of Parvalbumin-Positive Interneurons. Cereb Cortex. 2016 Feb;26(2):576-85. doi: 10.1093/cercor/bhu209. Epub 2014 Sep 21. PubMed PMID: 25246509; PubMed Central PMCID: PMC4712794.
  41. Geng X, Wu JY. 'Blue' voltage-sensitive dyes for studying spatiotemporal dynamics in the brain: visualizing cortical waves. Neurophotonics. 2017 Jul;4(3):031207. doi: 10.1117/1.NPh.4.3.031207. Epub 2017 Mar 9. PubMed PMID: 28352646; PubMed Central PMCID: PMC5343229.
  42. Sun ZY, Bozzelli PL, Caccavano A, Allen M, Balmuth J, Vicini S, Wu JY, Conant K. Disruption of perineuronal nets increases the frequency of sharp wave ripple events. Hippocampus. 2018 Jan;28(1):42-52. doi: 10.1002/hipo.22804. Epub 2017 Sep 26. PubMed PMID: 28921856; PubMed Central PMCID: PMC6047756.
  43. Jiang H, Liu S, Geng X, Caccavano A, Conant K, Vicini S, Wu J. Pacing Hippocampal Sharp-Wave Ripples With Weak Electric Stimulation. Front Neurosci. 2018;12:164. doi: 10.3389/fnins.2018.00164. eCollection 2018. PubMed PMID: 29599704; PubMed Central PMCID: PMC5862867.
  44. Alaiyed S, Bozzelli PL, Caccavano A, Wu JY, Conant K. Venlafaxine stimulates PNN proteolysis and MMP-9-dependent enhancement of gamma power; relevance to antidepressant efficacy. J Neurochem. 2019 Mar;148(6):810-821. doi: 10.1111/jnc.14671. Epub 2019 Feb 20. PubMed PMID: 30697747; PubMed Central PMCID: PMC6516074.
  45. Li P, Geng X, Jiang H, Caccavano A, Vicini S, Wu JY. Measuring Sharp Waves and Oscillatory Population Activity With the Genetically Encoded Calcium Indicator GCaMP6f. Front Cell Neurosci. 2019;13:274. doi: 10.3389/fncel.2019.00274. eCollection 2019. PubMed PMID: 31275115; PubMed Central PMCID: PMC6593119.
  • Page of 1