NLRP3 selectively drives IL-1β secretion by Pseudomonas aeruginosa infected neutrophils and regulates corneal disease severity.
Nature Communications. Forthcoming.
PopB-PcrV Interactions Are Essential for Pore Formation in the Pseudomonas aeruginosa Type III Secretion System Translocon.
mBio.
2022 Oct 26;13(5):e0238122. doi: 10.1128/mbio.02381-22. Epub 2022 Sep 26. PubMed PMID:
36154276; PubMed Central PMCID:
PMC9600203.
Cell-type-specific hypertranslocation of effectors by the Pseudomonas aeruginosa type III secretion system.
Mol Microbiol.
2021 Feb;115(2):305-319. doi: 10.1111/mmi.14617. Epub 2020 Nov 5. PubMed PMID:
33012037; PubMed Central PMCID:
PMC7897236.
The PopN Gate-keeper Complex Acts on the ATPase PscN to Regulate the T3SS Secretion Switch from Early to Middle Substrates in Pseudomonas aeruginosa.
J Mol Biol.
2020 Dec 4;432(24):166690. doi: 10.1016/j.jmb.2020.10.024. Epub 2020 Oct 22. PubMed PMID:
33289667.
"The structure of the Type III secretion system export gate with CdsO, an ATPase lever arm".
PLoS Pathog.
2020 Oct;16(10):e1008923. doi: 10.1371/journal.ppat.1008923. eCollection 2020 Oct. PubMed PMID:
33048983; PubMed Central PMCID:
PMC7584215.
RNase E Promotes Expression of Type III Secretion System Genes in Pseudomonas aeruginosa.
J Bacteriol.
2019 Nov 15;201(22). doi: 10.1128/JB.00336-19. Print 2019 Nov 15. PubMed PMID:
31481542; PubMed Central PMCID:
PMC6805110.
Pseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils.
Cell Host Microbe.
2017 May 10;21(5):611-618.e5. doi: 10.1016/j.chom.2017.04.001. PubMed PMID:
28494242; PubMed Central PMCID:
PMC5478421.
The Type III Secretion Translocation Pore Senses Host Cell Contact.
PLoS Pathog.
2016 Mar;12(3):e1005530. doi: 10.1371/journal.ppat.1005530. eCollection 2016 Mar. PubMed PMID:
27022930; PubMed Central PMCID:
PMC4811590.
Fueling type III secretion.
Trends Microbiol.
2015 May;23(5):296-300. doi: 10.1016/j.tim.2015.01.012. Epub 2015 Feb 17. Review. PubMed PMID:
25701111; PubMed Central PMCID:
PMC4417389.
Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG.
Proc Natl Acad Sci U S A.
2014 May 13;111(19):E2027-36. doi: 10.1073/pnas.1402658111. Epub 2014 Apr 28. PubMed PMID:
24778208; PubMed Central PMCID:
PMC4024851.
Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates.
PLoS One.
2014;9(1):e86829. doi: 10.1371/journal.pone.0086829. eCollection 2014. PubMed PMID:
24466261; PubMed Central PMCID:
PMC3900666.
Dimerization of the Pseudomonas aeruginosa translocator chaperone PcrH is required for stability, not function.
J Bacteriol.
2013 Nov;195(21):4836-43. doi: 10.1128/JB.00335-13. Epub 2013 Aug 23. PubMed PMID:
23974025; PubMed Central PMCID:
PMC3807485.
Host response and bacterial virulence factor expression in Pseudomonas aeruginosa and Streptococcus pneumoniae corneal ulcers.
PLoS One.
2013;8(6):e64867. doi: 10.1371/journal.pone.0064867. Print 2013. PubMed PMID:
23750216; PubMed Central PMCID:
PMC3672173.
Host defense at the ocular surface.
Int Rev Immunol.
2013 Feb;32(1):4-18. doi: 10.3109/08830185.2012.749400. Review. PubMed PMID:
23360155; PubMed Central PMCID:
PMC3750950.
A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function.
Mol Microbiol.
2012 Dec;86(6):1464-81. doi: 10.1111/mmi.12069. Epub 2012 Nov 5. PubMed PMID:
23121689; PubMed Central PMCID:
PMC3524397.
Cutting edge: IL-1β processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1.
J Immunol.
2012 Nov 1;189(9):4231-5. doi: 10.4049/jimmunol.1201447. Epub 2012 Sep 28. PubMed PMID:
23024281; PubMed Central PMCID:
PMC3482477.
ExoS and ExoT ADP ribosyltransferase activities mediate Pseudomonas aeruginosa keratitis by promoting neutrophil apoptosis and bacterial survival.
J Immunol.
2012 Feb 15;188(4):1884-95. doi: 10.4049/jimmunol.1102148. Epub 2012 Jan 16. PubMed PMID:
22250085; PubMed Central PMCID:
PMC3273577.
TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways.
J Immunol.
2010 Oct 1;185(7):4272-83. doi: 10.4049/jimmunol.1000874. Epub 2010 Sep 8. PubMed PMID:
20826748; PubMed Central PMCID:
PMC3392180.
Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV.
Mol Microbiol.
2010 Feb;75(4):924-41. doi: 10.1111/j.1365-2958.2009.07027.x. PubMed PMID:
20487288; PubMed Central PMCID:
PMC3124366.
ExoS controls the cell contact-mediated switch to effector secretion in Pseudomonas aeruginosa.
J Bacteriol.
2008 Apr;190(8):2726-38. doi: 10.1128/JB.01553-07. Epub 2007 Nov 26. PubMed PMID:
18039770; PubMed Central PMCID:
PMC2293250.
Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa.
Mol Microbiol.
2006 Feb;59(3):807-20. doi: 10.1111/j.1365-2958.2005.04990.x. PubMed PMID:
16420353; PubMed Central PMCID:
PMC2654213.
ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A.
2005 May 31;102(22):8006-11. doi: 10.1073/pnas.0503005102. Epub 2005 May 23. PubMed PMID:
15911752; PubMed Central PMCID:
PMC1142391.
Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo.
Infect Immun.
2005 Mar;73(3):1706-13. doi: 10.1128/IAI.73.3.1706-1713.2005. PubMed PMID:
15731071; PubMed Central PMCID:
PMC1064930.
A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa.
Dev Cell.
2004 Nov;7(5):745-54. doi: 10.1016/j.devcel.2004.08.020. PubMed PMID:
15525535.
Isolation and characterization of a generalized transducing phage for Pseudomonas aeruginosa strains PAO1 and PA14.
J Bacteriol.
2004 May;186(10):3270-3. doi: 10.1128/JB.186.10.3270-3273.2004. PubMed PMID:
15126493; PubMed Central PMCID:
PMC400619.
Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa.
Infect Immun.
2004 Mar;72(3):1383-90. doi: 10.1128/IAI.72.3.1383-1390.2004. PubMed PMID:
14977942; PubMed Central PMCID:
PMC356022.
Importance of redox potential for the in vivo function of the cytoplasmic disulfide reductant thioredoxin from Escherichia coli.
J Biol Chem.
1999 Sep 3;274(36):25254-9. doi: 10.1074/jbc.274.36.25254. PubMed PMID:
10464247.
The genetics of disulfide bond metabolism.
Annu Rev Genet.
1998;32:163-84. doi: 10.1146/annurev.genet.32.1.163. Review. PubMed PMID:
9928478.
Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin.
J Bacteriol.
1997 Nov;179(21):6602-8. doi: 10.1128/jb.179.21.6602-6608.1997. PubMed PMID:
9352906; PubMed Central PMCID:
PMC179585.
The hydrophilic C-terminal part of the lambda S holin is non-essential for intermolecular interactions.
FEMS Microbiol Lett.
1997 Aug 15;153(2):393-8. doi: 10.1111/j.1574-6968.1997.tb12601.x. PubMed PMID:
9271868.
An in vivo pathway for disulfide bond isomerization in Escherichia coli.
Proc Natl Acad Sci U S A.
1996 Nov 12;93(23):13048-53. doi: 10.1073/pnas.93.23.13048. PubMed PMID:
8917542; PubMed Central PMCID:
PMC24044.
Lambda kil-mediated lysis requires the phage context.
Virology.
1993 Apr;193(2):1033-6. doi: 10.1006/viro.1993.1222. PubMed PMID:
8460474.
Non-specific hole formation in the Escherichia coli inner membrane by lambda S proteins in independent of cellular secY and secA functions and of the proportion of membrane acidic phospholipids.
FEMS Microbiol Lett.
1993 Feb 15;107(1):101-5. doi: 10.1016/0378-1097(93)90361-5. PubMed PMID:
8467992.
What would you like to do?