Semi-degradable scaffold for articular cartilage replacement.
Tissue Eng Part A.
2008 Jan;14(1):207-13. doi: 10.1089/ten.a.2006.0344. PubMed PMID:
18333818; PubMed Central PMCID:
PMC2705060.
Superporous hydrogels for cartilage repair: Evaluation of the morphological and mechanical properties.
Acta Biomater.
2008 Jan;4(1):17-25. doi: 10.1016/j.actbio.2007.09.001. Epub 2007 Sep 22. PubMed PMID:
18029236.
Characterization of the behavior of porous hydrogels in model osmotically-conditioned articular cartilage systems.
J Biomed Mater Res B Appl Biomater.
2009 Aug;90(2):752-9. doi: 10.1002/jbm.b.31344. PubMed PMID:
19274725.
Analysis of the in vitro swelling behavior of poly(vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement.
Acta Biomater.
2011 Jun;7(6):2477-82. doi: 10.1016/j.actbio.2011.02.016. Epub 2011 Feb 15. PubMed PMID:
21329769.
Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering.
J Tissue Eng Regen Med.
2011 Aug;5(8):636-47. doi: 10.1002/term.356. Epub 2010 Dec 29. PubMed PMID:
21774087.
Hydrogels for the repair of articular cartilage defects.
Tissue Eng Part B Rev.
2011 Aug;17(4):281-99. doi: 10.1089/ten.TEB.2011.0077. Epub 2011 Jun 30. Review. PubMed PMID:
21510824; PubMed Central PMCID:
PMC3171151.
A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels: controlled release for cartilage tissue engineering.
J Control Release.
2012 Jan 10;157(1):39-45. doi: 10.1016/j.jconrel.2011.09.057. Epub 2011 Sep 10. PubMed PMID:
21930167.
Time-dependent processes in stem cell-based tissue engineering of articular cartilage.
Stem Cell Rev Rep.
2012 Sep;8(3):863-81. doi: 10.1007/s12015-011-9328-5. PubMed PMID:
22016073; PubMed Central PMCID:
PMC3412929.
Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.
Tissue Eng Part A.
2013 Oct;19(19-20):2188-200. doi: 10.1089/ten.TEA.2012.0352. Epub 2013 Jun 25. PubMed PMID:
23651296; PubMed Central PMCID:
PMC3761430.
Manipulation of macrophages to enhance bone repair and regeneration.
In:
Zreiqat H, Rosen V, editors.
A Tissue Regeneration Approach to Bone Repair
Switzerland: Springer; 2014.
The role of macrophage phenotype in vascularization of tissue engineering scaffolds.
Biomaterials.
2014 May;35(15):4477-88. doi: 10.1016/j.biomaterials.2014.02.012. Epub 2014 Feb 28. PubMed PMID:
24589361; PubMed Central PMCID:
PMC4000280.
The role of macrophages in the foreign body response to implanted biomaterials.
In:
Santambrogio L, editor.
Biomaterials in Regenerative Medicine and the Immune System
Switzerland: Springer; 2015. 424p.
Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds.
Biomaterials.
2015 Jan;37:194-207. doi: 10.1016/j.biomaterials.2014.10.017. Epub 2014 Oct 23. PubMed PMID:
25453950; PubMed Central PMCID:
PMC4312192.
Nanoparticulate systems for controlling monocyte/macrophage behavior.
In:
Singh A, Gaharwar A, editors.
Microscale Technologies for Cell Engineering Applications
New York, NY: Springer; 2015.
Macrophages modulate engineered human tissues for enhanced vascularization and healing.
Ann Biomed Eng.
2015 Mar;43(3):616-27. doi: 10.1007/s10439-014-1156-8. Epub 2014 Oct 21. PubMed PMID:
25331098; PubMed Central PMCID:
PMC4380684.
Clinical translation of controlled protein delivery systems for tissue engineering.
Drug Deliv Transl Res.
2015 Apr;5(2):101-15. doi: 10.1007/s13346-013-0135-1. Review. PubMed PMID:
25787736; PubMed Central PMCID:
PMC4311895.
Relative Expression of Proinflammatory and Antiinflammatory Genes Reveals Differences between Healing and Nonhealing Human Chronic Diabetic Foot Ulcers.
J Invest Dermatol.
2015 Jun;135(6):1700-1703. doi: 10.1038/jid.2015.30. Epub 2015 Feb 3. PubMed PMID:
25647438.
Controlled release of cytokines using silk-biomaterials for macrophage polarization.
Biomaterials.
2015 Dec;73:272-83. doi: 10.1016/j.biomaterials.2015.09.027. Epub 2015 Sep 21. PubMed PMID:
26421484; PubMed Central PMCID:
PMC4605898.
Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood.
Blood.
2016 Jan 7;127(1):149-59. doi: 10.1182/blood-2015-05-647560. Epub 2015 Nov 24. PubMed PMID:
26603837; PubMed Central PMCID:
PMC4705605.
Temporal and spatial distribution of macrophage phenotype markers in the foreign body response to glutaraldehyde-crosslinked gelatin hydrogels.
J Biomater Sci Polym Ed.
2016;27(8):721-42. doi: 10.1080/09205063.2016.1155881. Epub 2016 Mar 11. PubMed PMID:
26902292; PubMed Central PMCID:
PMC4879875.
Response of human macrophages to wound matrices in vitro.
Wound Repair Regen.
2016 May;24(3):514-24. doi: 10.1111/wrr.12423. Epub 2016 Apr 6. PubMed PMID:
26874797.
Drug delivery strategies to control macrophages for tissue repair and regeneration.
Exp Biol Med (Maywood).
2016 May;241(10):1054-63. doi: 10.1177/1535370216649444. Epub 2016 May 6. Review. PubMed PMID:
27190256; PubMed Central PMCID:
PMC4950366.
In vitro response of macrophages to ceramic scaffolds used for bone regeneration.
J R Soc Interface.
2016 Jul;13(120). doi: 10.1098/rsif.2016.0346. PubMed PMID:
27466438; PubMed Central PMCID:
PMC4971223.
Differences in time-dependent mechanical properties between extruded and molded hydrogels.
Biofabrication.
2016 Aug 22;8(3):035012. doi: 10.1088/1758-5090/8/3/035012. PubMed PMID:
27550945; PubMed Central PMCID:
PMC5118821.
Effect of M1-M2 Polarization on the Motility and Traction Stresses of Primary Human Macrophages.
Cell Mol Bioeng.
2016 Sep;9(3):455-465. doi: 10.1007/s12195-016-0435-x. Epub 2016 Apr 18. PubMed PMID:
28458726; PubMed Central PMCID:
PMC5404741.
Differential gene expression in human, murine, and cell line-derived macrophages upon polarization.
Exp Cell Res.
2016 Sep 10;347(1):1-13. doi: 10.1016/j.yexcr.2015.10.017. Epub 2015 Oct 21. PubMed PMID:
26500109.
iomaterials and bioactive factor delivery systems for the control of macrophage activation in regenerative medicine.
ACS biomaterials science & engineering. 2017; 4(4):1137-1148.
Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury.
J Neurosci.
2017 Mar 1;37(9):2362-2376. doi: 10.1523/JNEUROSCI.2751-16.2017. Epub 2017 Jan 27. PubMed PMID:
28130359; PubMed Central PMCID:
PMC5354348.
Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine.
Exp Neurol.
2017 Apr;290:85-94. doi: 10.1016/j.expneurol.2017.01.004. Epub 2017 Jan 9. PubMed PMID:
28081963; PubMed Central PMCID:
PMC5529036.
Deconvolution of heterogeneous wound tissue samples into relative macrophage phenotype composition via models based on gene expression.
Integr Biol (Camb).
2017 Apr 18;9(4):328-338. doi: 10.1039/c7ib00018a. PubMed PMID:
28290581; PubMed Central PMCID:
PMC5719501.
Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing.
Immunobiology.
2017 Jul;222(7):847-856. doi: 10.1016/j.imbio.2017.02.006. Epub 2017 Feb 20. PubMed PMID:
28318799; PubMed Central PMCID:
PMC5719494.
Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages.
Biomater Sci.
2017 Sep 26;5(10):2131-2143. doi: 10.1039/c7bm00294g. PubMed PMID:
28875995; PubMed Central PMCID:
PMC5719499.
Immunomodulatory Effects of Human Cryopreserved Viable Amniotic Membrane in a Pro-Inflammatory Environment In Vitro.
Cell Mol Bioeng.
2017 Oct;10(5):451-462. doi: 10.1007/s12195-017-0494-7. Epub 2017 Aug 4. PubMed PMID:
29225709; PubMed Central PMCID:
PMC5720175.
Biomimetic Approaches for Bone Tissue Engineering.
Tissue Eng Part B Rev.
2017 Oct;23(5):480-493. doi: 10.1089/ten.TEB.2016.0289. Epub 2017 Jan 18. Review. PubMed PMID:
27912680; PubMed Central PMCID:
PMC5653138.
Cardiac Progenitor Cell Recruitment Drives Fetal Cardiac Regeneration by Enhanced Angiogenesis.
Ann Thorac Surg.
2017 Dec;104(6):1968-1975. doi: 10.1016/j.athoracsur.2017.05.040. Epub 2017 Aug 16. PubMed PMID:
28821329.
Macrophage-based therapeutic strategies in regenerative medicine.
Adv Drug Deliv Rev.
2017 Dec 1;122:74-83. doi: 10.1016/j.addr.2017.05.010. Epub 2017 May 16. Review. PubMed PMID:
28526591; PubMed Central PMCID:
PMC5690893.
In Vitro Model of Macrophage-Biomaterial Interactions.
Methods Mol Biol.
2018;1758:161-176. doi: 10.1007/978-1-4939-7741-3_13. PubMed PMID:
29679330.
Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration.
Spine J.
2018 Feb;18(2):343-356. doi: 10.1016/j.spinee.2017.09.018. Epub 2017 Oct 12. PubMed PMID:
29031872; PubMed Central PMCID:
PMC5815908.
Host-Biomaterial Interactions in Zebrafish.
ACS Biomater Sci Eng.
2018 Apr 9;4(4):1233-1240. doi: 10.1021/acsbiomaterials.6b00760. Epub 2017 Apr 19. PubMed PMID:
33418656.
Small molecule disruption of G protein βγ subunit signaling reprograms human macrophage phenotype and prevents autoimmune myocarditis in rats.
PLoS One.
2018;13(7):e0200697. doi: 10.1371/journal.pone.0200697. eCollection 2018. PubMed PMID:
30024944; PubMed Central PMCID:
PMC6053176.
Effects of Non-thermal, Non-cavitational Ultrasound Exposure on Human Diabetic Ulcer Healing and Inflammatory Gene Expression in a Pilot Study.
Ultrasound Med Biol.
2018 Sep;44(9):2043-2049. doi: 10.1016/j.ultrasmedbio.2018.05.011. Epub 2018 Jun 22. PubMed PMID:
29941215; PubMed Central PMCID:
PMC6105501.
Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12.
JCI Insight.
2019 Jan 10;4(1). doi: 10.1172/jci.insight.122742. PubMed PMID:
30626744; PubMed Central PMCID:
PMC6485356.
Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis.
Adv Healthc Mater.
2019 Feb;8(4):e1801451. doi: 10.1002/adhm.201801451. Epub 2019 Jan 18. Review. PubMed PMID:
30658015; PubMed Central PMCID:
PMC6415913.
Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings.
Biomaterials.
2019 Mar;196:90-99. doi: 10.1016/j.biomaterials.2018.07.012. Epub 2018 Jul 17. PubMed PMID:
30075952; PubMed Central PMCID:
PMC6336526.
Modulation of inflammation in wounds of diabetic patients treated with porcine urinary bladder matrix.
Regen Med.
2019 May;14(4):269-277. doi: 10.2217/rme-2019-0009. Epub 2019 Apr 25. PubMed PMID:
31020913; PubMed Central PMCID:
PMC6886567.
Modulation of macrophage phenotype via phagocytosis of drug-loaded microparticles.
J Biomed Mater Res A.
2019 Jun;107(6):1213-1224. doi: 10.1002/jbm.a.36617. Epub 2019 Feb 11. PubMed PMID:
30672109; PubMed Central PMCID:
PMC6499658.
Immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis.
Regen Biomater.
2019 Jun;6(3):163-174. doi: 10.1093/rb/rbz012. Epub 2019 Apr 19. PubMed PMID:
31198584; PubMed Central PMCID:
PMC6547310.
Healing of Chronic Wounds: An Update of Recent Developments and Future Possibilities.
Tissue Eng Part B Rev.
2019 Oct;25(5):429-444. doi: 10.1089/ten.TEB.2019.0019. Epub 2019 Sep 11. Review. PubMed PMID:
31068101.
Human macrophage response to microbial supernatants from diabetic foot ulcers.
Wound Repair Regen.
2019 Nov;27(6):598-608. doi: 10.1111/wrr.12752. Epub 2019 Aug 10. PubMed PMID:
31343792.
Biomaterial-mediated reprogramming of monocytes via microparticle phagocytosis for sustained modulation of macrophage phenotype.
Acta Biomater.
2020 Jan 1;101:237-248. doi: 10.1016/j.actbio.2019.11.021. Epub 2019 Nov 13. PubMed PMID:
31731024; PubMed Central PMCID:
PMC6960335.
What would you like to do?