Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application

Foods. 2021 Feb 9;10(2):376. doi: 10.3390/foods10020376.

Abstract

Plant proteins are being considered to become the most important protein source of the future, and to do so, they must be able to replace the animal-derived proteins currently in use as techno-functional food ingredients. This poses challenges because plant proteins are oftentimes storage proteins with a high molecular weight and low water solubility. One promising approach to overcome these limitations is the glycation of plant proteins. The covalent bonding between the proteins and different carbohydrates created via the initial stage of the Maillard reaction can improve the techno-functional characteristics of these proteins without the involvement of potentially toxic chemicals. However, compared to studies with animal-derived proteins, glycation studies on plant proteins are currently still underrepresented in literature. This review provides an overview of the existing studies on the glycation of the major groups of plant proteins with different carbohydrates using different preparation methods. Emphasis is put on the reaction conditions used for glycation as well as the modifications to physicochemical properties and techno-functionality. Different applications of these glycated plant proteins in emulsions, foams, films, and encapsulation systems are introduced. Another focus lies on the reaction chemistry of the Maillard reaction and ways to harness it for controlled glycation and to limit the formation of undesired advanced glycation products. Finally, challenges related to the controlled glycation of plant proteins to improve their properties are discussed.

Keywords: AGEs; Amadori products; Maillard reaction; application; plant proteins; protein-polysaccharide conjugate; techno-functionality.

Publication types

  • Review