An Engineered Microvirin Variant with Identical Structural Domains Potently Inhibits Human Immunodeficiency Virus and Hepatitis C Virus Cellular Entry

Viruses. 2020 Feb 11;12(2):199. doi: 10.3390/v12020199.

Abstract

Microvirin (MVN) is one of the human immunodeficiency virus (HIV-1) entry inhibitor lectins, which consists of two structural domains sharing 35% sequence identity and contrary to many other antiviral lectins, it exists as a monomer. In this study, we engineered an MVN variant, LUMS1, consisting of two domains with 100% sequence identity, thereby reducing the chemical heterogeneity, which is a major factor in eliciting immunogenicity. We determined carbohydrate binding of LUMS1 through NMR chemical shift perturbation and tested its anti-HIV activity in single-round infectivity assay and its anti-hepatitis C virus (HCV) activity in three different assays including HCVcc, HCVpp, and replicon assays. We further investigated the effect of LUMS1 on the activation of T helper (Th) and B cells through flow cytometry. LUMS1 showed binding to (1-2)mannobiose, the minimum glycan epitope of MVN, potently inhibited HIV-1 and HCV with EC50 of 37.2 and 45.3 nM, respectively, and showed negligible cytotoxicity with CC50 > 10 µM against PBMCs, Huh-7.5 and HepG2 cells, and 4.9 µM against TZM-bl cells. LUMS1 did not activate Th cells, and its stimulatory effect on B cells was markedly less as compared to MVN. Together, with these effects, LUMS1 represents a potential candidate for the development of antiviral therapies.

Keywords: LUMS1; antiviral inhibitor; hepatitis C virus; human immunodeficiency virus; lectin; microvirin; non-immunogenic; protein drugs; viral entry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / pharmacology*
  • B-Lymphocytes / drug effects
  • B-Lymphocytes / immunology
  • Carbohydrates
  • Cell Line
  • HIV-1 / drug effects*
  • HIV-1 / physiology
  • Hep G2 Cells
  • Hepacivirus / drug effects*
  • Hepacivirus / physiology
  • Humans
  • Lectins / chemistry
  • Lectins / genetics
  • Lectins / pharmacology*
  • Leukocytes, Mononuclear / drug effects
  • Protein Binding
  • Th1 Cells / drug effects
  • Th1 Cells / immunology
  • Virus Internalization / drug effects*

Substances

  • Antiviral Agents
  • Carbohydrates
  • Lectins