Tuneable Giant Magnetocaloric Effect in (Mn,Fe)₂(P,Si) Materials by Co-B and Ni-B Co-Doping

Materials (Basel). 2016 Dec 27;10(1):14. doi: 10.3390/ma10010014.

Abstract

The influence of Co (Ni) and B co-doping on the structural, magnetic and magnetocaloric properties of (Mn,Fe) 2 (P,Si) compounds is investigated by X-ray diffraction (XRD), differential scanning calorimetry, magnetic and direct temperature change measurements. It is found that Co (Ni) and B co-doping is an effective approach to tune both the Curie temperature and the thermal hysteresis of (Mn,Fe) 2 (P,Si) materials without losing either the giant magnetocaloric effect or the positive effect of the B substitution on the mechanical stability. An increase in B concentration leads to a rapid decrease in thermal hysteresis, while an increase in the Co or Ni concentration hardly changes the thermal hysteresis of the (Mn,Fe) 2 (P,Si) compounds. However, the Curie temperature decreases slowly as a function of the Co or Ni content, while it increases dramatically for increasing B concentration. Hence, the co-substitution of Fe and P by Co (Ni) and B, respectively, offers a new control parameter to adjust the Curie temperature and reduce the thermal hysteresis of the (Mn,Fe) 2 (P,Si) materials.

Keywords: Co substitution; Fe2P; Ni substitution; magnetic refrigeration; magnetocaloric effect.