A Tunable Photoluminescent Composite of Cellulose Nanofibrils and CdS Quantum Dots

Nanomaterials (Basel). 2016 Sep 7;6(9):164. doi: 10.3390/nano6090164.

Abstract

The preparation of fluorescent nanocomposite materials with tunable emission wavelengths by combining cellulose nanofibrils (CNFs) with inorganic nanoparticles is important for promoting CNFs applications. A CNF/CdS nanocomposite was prepared via in situ compositing at room temperature on oxidized CNFs with CdS quantum dots. By controlling the -COOH/Cd2+ ratio on the CNF, the feeding time of Na₂S and the ultrasonic maturing time, the size of the CdS quantum dots on the CNF surface could be adjusted so that to obtain the CNF/CdS nanocomposite material with different fluorescent colors. The results indicated that the CdS particles quantized were evenly distributed on the CNF. The maximum average size of the CdS nanoparticles glowed red under the excitation of UV light was 5.34 nm, which could be obtained with a -COOH/Cd2+ ratio of 1.0, a Na₂S feeding time of 20 min, and an ultrasonic maturing time of 60 min. A series of CNF/CdS nanocomposite materials were obtained with CdS nanoparticle sizes varying from 3.44 nm to 5.34 nm, the emission wavelength of which varied from 546 nm to 655 nm, and their fluorescence color changed from green to yellow to red. This is the first time the fluorescence-tunable effect of the CNF/CdS nanocomposite has been realized.

Keywords: CdS; cellulose nanofibrils; photoluminescence performance; quantum size effect.