Home > DARE Reviews > Effects of Exercise Training on...

PubMed Health. A service of the National Library of Medicine, National Institutes of Health.

Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. York (UK): Centre for Reviews and Dissemination (UK); 1995-.

Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet].

Effects of Exercise Training on Endothelial Progenitor Cells in Cardiovascular Disease: A Systematic Review.

Review published: 2013.

Bibliographic details: Ribeiro F, Ribeiro IP, Alves AJ, do Ceu Monteiro M, Oliveira NL, Oliveira J, Amado F, Remiao F, Duarte JA.  Effects of Exercise Training on Endothelial Progenitor Cells in Cardiovascular Disease: A Systematic Review. American Journal of Physical Medicine and Rehabilitation 2013; 92(11): 1020-1030. [PubMed: 23811616]

Abstract

This review aimed to examine the effects of exercise training on mobilization of endothelial progenitor cells (EPCs) in patients with cardiovascular disease and to discuss the possible mechanisms involved in the process. A computer-aided search on PubMed and PEDro was conducted to identify relevant studies published up to June 2012. Two reviewers independently selected studies for inclusion and extracted data, namely, quantitative assessment of circulating EPCs. Of the 88 identified studies, 13 met the inclusion criteria. The 13 studies enrolled 648 participants, including patients with chronic heart failure, peripheral artery disease, and coronary artery disease. The exercise characteristics varied largely across the studies: exercise duration ranged from 2 wks to 6 mos, session duration ranged from 20 to 60 mins, and exercise intensity was usually calculated using the maximal heart rate (ranging from 75% to 85%) or the peak/maximum oxygen consumption (60%-70%). All studies used aerobic exercise. The great majority of the 13 studies reported significant effects of different exercise regimens on the number of circulating EPCs. In summary, exercise training seems to increase the number of circulating EPCs, which could contribute to vascular regeneration and angiogenesis. These positive effects of chronic exercise seem to be closely related to the bioavailability of nitric oxide, including increased activity of endothelial nitric oxide synthase and antioxidant enzymes, and activation of matrix metalloproteinase 9.

CRD has determined that this article meets the DARE scientific quality criteria for a systematic review.

Copyright © 2014 University of York.

PMID: 23811616

PubMed Health Blog...

read all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...