Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 112

1.

Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

Brown BL, Kardon JR, Sauer RT, Baker TA.

Structure. 2018 Apr 3;26(4):580-589.e4. doi: 10.1016/j.str.2018.02.012. Epub 2018 Mar 15.

PMID:
29551290
2.

Mechanical Protein Unfolding and Degradation.

Olivares AO, Baker TA, Sauer RT.

Annu Rev Physiol. 2018 Feb 10;80:413-429. doi: 10.1146/annurev-physiol-021317-121303.

PMID:
29433415
3.

Mutation in human CLPX elevates levels of δ-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria.

Yien YY, Ducamp S, van der Vorm LN, Kardon JR, Manceau H, Kannengiesser C, Bergonia HA, Kafina MD, Karim Z, Gouya L, Baker TA, Puy H, Phillips JD, Nicolas G, Paw BH.

Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E8045-E8052. doi: 10.1073/pnas.1700632114. Epub 2017 Sep 5.

4.

Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines.

Olivares AO, Kotamarthi HC, Stein BJ, Sauer RT, Baker TA.

Proc Natl Acad Sci U S A. 2017 Jul 19. pii: 201707794. doi: 10.1073/pnas.1707794114. [Epub ahead of print]

5.

Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation.

Baytshtok V, Chen J, Glynn SE, Nager AR, Grant RA, Baker TA, Sauer RT.

J Biol Chem. 2017 Apr 7;292(14):5695-5704. doi: 10.1074/jbc.M116.768978. Epub 2017 Feb 21.

6.

Two Isoforms of Clp Peptidase in Pseudomonas aeruginosa Control Distinct Aspects of Cellular Physiology.

Hall BM, Breidenstein EBM, de la Fuente-Núñez C, Reffuveille F, Mawla GD, Hancock REW, Baker TA.

J Bacteriol. 2017 Jan 12;199(3). pii: e00568-16. doi: 10.1128/JB.00568-16. Print 2017 Feb 1.

7.

A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis.

Baytshtok V, Fei X, Grant RA, Baker TA, Sauer RT.

Structure. 2016 Oct 4;24(10):1766-1777. doi: 10.1016/j.str.2016.08.012. Epub 2016 Sep 22.

8.

Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle.

Amor AJ, Schmitz KR, Sello JK, Baker TA, Sauer RT.

ACS Chem Biol. 2016 Jun 17;11(6):1552-1560. doi: 10.1021/acschembio.6b00083. Epub 2016 Mar 30.

9.

Structural Basis of an N-Degron Adaptor with More Stringent Specificity.

Stein BJ, Grant RA, Sauer RT, Baker TA.

Structure. 2016 Feb 2;24(2):232-42. doi: 10.1016/j.str.2015.12.008. Epub 2016 Jan 21.

10.

Oxidization without substrate unfolding triggers proteolysis of the peroxide-sensor, PerR.

Ahn BE, Baker TA.

Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E23-31. doi: 10.1073/pnas.1522687112. Epub 2015 Dec 17.

11.

Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines.

Olivares AO, Baker TA, Sauer RT.

Nat Rev Microbiol. 2016 Jan;14(1):33-44. doi: 10.1038/nrmicro.2015.4. Epub 2015 Dec 7. Review.

12.

Dissection of Axial-Pore Loop Function during Unfolding and Translocation by a AAA+ Proteolytic Machine.

Iosefson O, Olivares AO, Baker TA, Sauer RT.

Cell Rep. 2015 Aug 11;12(6):1032-41. doi: 10.1016/j.celrep.2015.07.007. Epub 2015 Jul 30.

13.

Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis.

Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH, Baker TA.

Cell. 2015 May 7;161(4):858-67. doi: 10.1016/j.cell.2015.04.017.

14.

Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.

Baytshtok V, Baker TA, Sauer RT.

Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5377-82. doi: 10.1073/pnas.1505881112. Epub 2015 Apr 13.

15.

Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX.

Stinson BM, Baytshtok V, Schmitz KR, Baker TA, Sauer RT.

Nat Struct Mol Biol. 2015 May;22(5):411-6. doi: 10.1038/nsmb.3012. Epub 2015 Apr 13.

16.

Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX.

Ling L, Montaño SP, Sauer RT, Rice PA, Baker TA.

J Mol Biol. 2015 Sep 11;427(18):2966-82. doi: 10.1016/j.jmb.2015.03.008. Epub 2015 Mar 19.

17.

Erratum: Coordinated gripping of substrate by subunits of an AAA+ proteolytic machine.

Iosefson O, Nager AR, Baker TA, Sauer RT.

Nat Chem Biol. 2015 Apr;11(4):299. doi: 10.1038/nchembio0415-299a. No abstract available.

PMID:
25785430
18.

Steric clashes with bound OMP peptides activate the DegS stress-response protease.

de Regt AK, Baker TA, Sauer RT.

Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3326-31. doi: 10.1073/pnas.1502372112. Epub 2015 Mar 2.

19.

A conserved activation cluster is required for allosteric communication in HtrA-family proteases.

de Regt AK, Kim S, Sohn J, Grant RA, Baker TA, Sauer RT.

Structure. 2015 Mar 3;23(3):517-526. doi: 10.1016/j.str.2015.01.012. Epub 2015 Feb 19.

20.

Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine.

Iosefson O, Nager AR, Baker TA, Sauer RT.

Nat Chem Biol. 2015 Mar;11(3):201-6. doi: 10.1038/nchembio.1732. Epub 2015 Jan 19. Erratum in: Nat Chem Biol. 2015 Apr;11(4):299.

Supplemental Content

Loading ...
Support Center