Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 28

1.

Working Together: Redox Signaling between the Endoplasmic Reticulum and Mitochondria.

Siegenthaler KD, Sevier CS.

Chem Res Toxicol. 2019 Mar 18;32(3):342-344. doi: 10.1021/acs.chemrestox.8b00379. Epub 2019 Feb 5.

PMID:
30721036
2.

Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant.

O'Donnell JP, Marsh HM, Sondermann H, Sevier CS.

Biochemistry. 2018 Feb 20;57(7):1073-1086. doi: 10.1021/acs.biochem.7b01005. Epub 2018 Feb 1.

3.

How Are Proteins Reduced in the Endoplasmic Reticulum?

Ellgaard L, Sevier CS, Bulleid NJ.

Trends Biochem Sci. 2018 Jan;43(1):32-43. doi: 10.1016/j.tibs.2017.10.006. Epub 2017 Nov 15. Review.

4.

An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP.

Siegenthaler KD, Pareja KA, Wang J, Sevier CS.

Elife. 2017 Mar 3;6. pii: e24141. doi: 10.7554/eLife.24141.

5.

A Conserved Cysteine within the ATPase Domain of the Endoplasmic Reticulum Chaperone BiP is Necessary for a Complete Complement of BiP Activities.

Xu M, Marsh HM, Sevier CS.

J Mol Biol. 2016 Oct 9;428(20):4168-4184. doi: 10.1016/j.jmb.2016.08.011. Epub 2016 Aug 16.

6.

Formation and Reversibility of BiP Protein Cysteine Oxidation Facilitate Cell Survival during and post Oxidative Stress.

Wang J, Sevier CS.

J Biol Chem. 2016 Apr 1;291(14):7541-57. doi: 10.1074/jbc.M115.694810. Epub 2016 Feb 10.

7.

Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress.

Wang J, Pareja KA, Kaiser CA, Sevier CS.

Elife. 2014 Jul 22;3:e03496. doi: 10.7554/eLife.03496.

8.

The 5-lipoxygenase inhibitor tepoxalin induces oxidative damage and altered PTEN status prior to apoptosis in canine osteosarcoma cell lines.

Loftus JP, Cavatorta D, Bushey JJ, Levine CB, Sevier CS, Wakshlag JJ.

Vet Comp Oncol. 2016 Jun;14(2):e17-30. doi: 10.1111/vco.12094. Epub 2014 May 12.

PMID:
24813477
9.

Balanced Ero1 activation and inactivation establishes ER redox homeostasis.

Kim S, Sideris DP, Sevier CS, Kaiser CA.

J Cell Biol. 2012 Mar 19;196(6):713-25. doi: 10.1083/jcb.201110090. Epub 2012 Mar 12.

10.

Erv2 and quiescin sulfhydryl oxidases: Erv-domain enzymes associated with the secretory pathway.

Sevier CS.

Antioxid Redox Signal. 2012 Apr 15;16(8):800-8. doi: 10.1089/ars.2011.4450. Epub 2012 Jan 11. Review.

PMID:
22142242
11.

Steps in reductive activation of the disulfide-generating enzyme Ero1p.

Heldman N, Vonshak O, Sevier CS, Vitu E, Mehlman T, Fass D.

Protein Sci. 2010 Oct;19(10):1863-76. doi: 10.1002/pro.473.

12.

Oxidative activity of yeast Ero1p on protein disulfide isomerase and related oxidoreductases of the endoplasmic reticulum.

Vitu E, Kim S, Sevier CS, Lutzky O, Heldman N, Bentzur M, Unger T, Yona M, Kaiser CA, Fass D.

J Biol Chem. 2010 Jun 11;285(24):18155-65. doi: 10.1074/jbc.M109.064931. Epub 2010 Mar 26.

13.

New insights into oxidative folding.

Sevier CS.

J Cell Biol. 2010 Mar 22;188(6):757-8. doi: 10.1083/jcb.201002114.

14.

The genetic landscape of a cell.

Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C.

Science. 2010 Jan 22;327(5964):425-31. doi: 10.1126/science.1180823.

15.

Yeast Mpd1p reveals the structural diversity of the protein disulfide isomerase family.

Vitu E, Gross E, Greenblatt HM, Sevier CS, Kaiser CA, Fass D.

J Mol Biol. 2008 Dec 19;384(3):631-40. doi: 10.1016/j.jmb.2008.09.052. Epub 2008 Sep 27.

PMID:
18845159
16.

Ero1 and redox homeostasis in the endoplasmic reticulum.

Sevier CS, Kaiser CA.

Biochim Biophys Acta. 2008 Apr;1783(4):549-56. doi: 10.1016/j.bbamcr.2007.12.011. Epub 2007 Dec 23. Review.

17.

Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1.

Sevier CS, Qu H, Heldman N, Gross E, Fass D, Kaiser CA.

Cell. 2007 Apr 20;129(2):333-44.

18.

Conservation and diversity of the cellular disulfide bond formation pathways.

Sevier CS, Kaiser CA.

Antioxid Redox Signal. 2006 May-Jun;8(5-6):797-811. Review.

PMID:
16771671
19.

Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1.

Sevier CS, Kaiser CA.

Mol Biol Cell. 2006 May;17(5):2256-66. Epub 2006 Feb 22.

20.

Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p.

Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, Thorpe C, Fass D.

Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):299-304. Epub 2006 Jan 3.

Supplemental Content

Loading ...
Support Center