Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 808

1.

Mass Spectrometry Based Imaging of Labile Glucosides in Plants.

Bøgeskov Schmidt F, Heskes AM, Thinagaran D, Lindberg Møller B, Jørgensen K, Boughton BA.

Front Plant Sci. 2018 Jun 28;9:892. doi: 10.3389/fpls.2018.00892. eCollection 2018.

PMID:
30002667
2.

Domain Swap Approach Reveals the Critical Roles of Different Domains of SYMRK in Root Nodule Symbiosis in Lotus japonicus.

Li H, Chen M, Duan L, Zhang T, Cao Y, Zhang Z.

Front Plant Sci. 2018 Jun 5;9:697. doi: 10.3389/fpls.2018.00697. eCollection 2018.

3.

A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants.

Liu H, Sandal N, Andersen KR, James EK, Stougaard J, Kelly S, Kawaharada Y.

New Phytol. 2018 Jun 30. doi: 10.1111/nph.15293. [Epub ahead of print]

PMID:
29959893
4.

Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus.

Murakami E, Cheng J, Gysel K, Bozsoki Z, Kawaharada Y, Hjuler CT, Sørensen KK, Tao K, Kelly S, Venice F, Genre A, Thygesen MB, Jong N, Vinther M, Jensen DB, Jensen KJ, Blaise M, Madsen LH, Andersen KR, Stougaard J, Radutoiu S.

Elife. 2018 Jun 29;7. pii: e33506. doi: 10.7554/eLife.33506.

5.

Ion-dependent metabolic responses of Vicia faba L. to salt stress.

Richter JA, Behr JH, Erban A, Kopka J, Zörb C.

Plant Cell Environ. 2018 Jun 25. doi: 10.1111/pce.13386. [Epub ahead of print]

PMID:
29940081
6.

Lotus japonicus Genetic, Mutant, and Germplasm Resources.

Hashiguchi M, Tanaka H, Muguerza M, Akashi R, Sandal NN, Andersen SU, Sato S.

Curr Protoc Plant Biol. 2018 Jun;3(2):e20070. doi: 10.1002/cppb.20070.

PMID:
29927119
7.

An Efficient Protocol for Model Legume Root Protoplast Isolation and Transformation.

Jia N, Zhu Y, Xie F.

Front Plant Sci. 2018 Jun 4;9:670. doi: 10.3389/fpls.2018.00670. eCollection 2018.

8.

Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections.

Regus JU, Quides KW, O'Neill MR, Suzuki R, Savory EA, Chang JH, Sachs JL.

Am J Bot. 2017 Sep;104(9):1299-1312. doi: 10.3732/ajb.1700165.

9.

Small-Molecule Screening to Increase Agrobacterium-Mediated Transformation Efficiency in Legumes.

Kimura M, Isobe S.

Methods Mol Biol. 2018;1795:93-99. doi: 10.1007/978-1-4939-7874-8_8.

PMID:
29846921
10.

Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production.

D'Adamo S, Schiano di Visconte G, Lowe G, Szaub-Newton J, Beacham T, Landels A, Allen MJ, Spicer A, Matthijs M.

Plant Biotechnol J. 2018 May 13. doi: 10.1111/pbi.12948. [Epub ahead of print]

11.

Micro- and macroevolutionary adaptation through repeated loss of a complete metabolic pathway.

Olsen KM, Small LL.

New Phytol. 2018 Jul;219(2):757-766. doi: 10.1111/nph.15184. Epub 2018 Apr 30.

PMID:
29708583
12.

The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis.

Brands M, Wewer V, Keymer A, Gutjahr C, Dörmann P.

Plant J. 2018 Jul;95(2):219-232. doi: 10.1111/tpj.13943. Epub 2018 May 21.

PMID:
29687516
13.

Epidermal auxin biosynthesis facilitates rhizobial infection in Lotus japonicus.

Nadzieja M, Kelly S, Stougaard J, Reid D.

Plant J. 2018 Jul;95(1):101-111. doi: 10.1111/tpj.13934. Epub 2018 May 20.

PMID:
29676826
14.

Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia.

Berrabah F, Balliau T, Aït-Salem EH, George J, Zivy M, Ratet P, Gourion B.

New Phytol. 2018 Jul;219(1):310-323. doi: 10.1111/nph.15142. Epub 2018 Apr 18.

PMID:
29668080
15.

Identification and Expression Analysis of Medicago truncatula Isopentenyl Transferase Genes (IPTs) Involved in Local and Systemic Control of Nodulation.

Azarakhsh M, Lebedeva MA, Lutova LA.

Front Plant Sci. 2018 Mar 9;9:304. doi: 10.3389/fpls.2018.00304. eCollection 2018.

16.

Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development.

Magne K, George J, Berbel Tornero A, Broquet B, Madueño F, Andersen SU, Ratet P.

Plant J. 2018 Jun;94(5):880-894. doi: 10.1111/tpj.13905. Epub 2018 May 4.

PMID:
29570881
17.

Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation.

Ng JLP, Mathesius U.

Front Plant Sci. 2018 Feb 15;9:169. doi: 10.3389/fpls.2018.00169. eCollection 2018.

18.

A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus.

Nishida H, Tanaka S, Handa Y, Ito M, Sakamoto Y, Matsunaga S, Betsuyaku S, Miura K, Soyano T, Kawaguchi M, Suzaki T.

Nat Commun. 2018 Feb 5;9(1):499. doi: 10.1038/s41467-018-02831-x.

19.

Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules.

Zdyb A, Salgado MG, Demchenko KN, Brenner WG, Płaszczyca M, Stumpe M, Herrfurth C, Feussner I, Pawlowski K.

PLoS One. 2018 Jan 5;13(1):e0190884. doi: 10.1371/journal.pone.0190884. eCollection 2018.

20.

Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny.

Kelly S, Sullivan JT, Kawaharada Y, Radutoiu S, Ronson CW, Stougaard J.

Environ Microbiol. 2018 Jan;20(1):97-110. doi: 10.1111/1462-2920.14006. Epub 2018 Jan 3.

PMID:
29194913

Supplemental Content

Loading ...
Support Center