Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 139

1.

An auxin controls bacterial antibiotics production.

Matilla MA, Daddaoua A, Chini A, Morel B, Krell T.

Nucleic Acids Res. 2018 Nov 30;46(21):11229-11238. doi: 10.1093/nar/gky766.

2.

Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges.

Martín-Mora D, Fernández M, Velando F, Ortega Á, Gavira JA, Matilla MA, Krell T.

Int J Mol Sci. 2018 Nov 26;19(12). pii: E3755. doi: 10.3390/ijms19123755. Review.

3.

High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa.

Corral-Lugo A, Matilla MA, Martín-Mora D, Silva Jiménez H, Mesa Torres N, Kato J, Hida A, Oku S, Conejero-Muriel M, Gavira JA, Krell T.

MBio. 2018 Nov 13;9(6). pii: e01894-18. doi: 10.1128/mBio.01894-18.

4.

Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria.

Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, Shao J, Shen Q, Zhang R.

Environ Microbiol. 2018 Nov 12. doi: 10.1111/1462-2920.14472. [Epub ahead of print]

PMID:
30421582
5.

The plant compound rosmarinic acid induces a broad quorum sensing response in Pseudomonas aeruginosa PAO1.

Fernández M, Corral-Lugo A, Krell T.

Environ Microbiol. 2018 Jul 26. doi: 10.1111/1462-2920.14301. [Epub ahead of print]

PMID:
30051572
6.

Structural Basis for Polyamine Binding at the dCACHE Domain of the McpU Chemoreceptor from Pseudomonas putida.

Gavira JA, Ortega Á, Martín-Mora D, Conejero-Muriel MT, Corral-Lugo A, Morel B, Matilla MA, Krell T.

J Mol Biol. 2018 Jun 22;430(13):1950-1963. doi: 10.1016/j.jmb.2018.05.008. Epub 2018 May 11.

PMID:
29758259
7.

Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators.

Udaondo Z, Ramos JL, Segura A, Krell T, Daddaoua A.

Microb Biotechnol. 2018 May;11(3):442-454. doi: 10.1111/1751-7915.13263. Epub 2018 Apr 2. Review.

8.

High-Throughput Screening to Identify Chemoreceptor Ligands.

Fernández M, Ortega Á, Rico-Jiménez M, Martín-Mora D, Daddaoua A, Matilla MA, Krell T.

Methods Mol Biol. 2018;1729:291-301. doi: 10.1007/978-1-4939-7577-8_23.

PMID:
29429099
9.

The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists.

Martín-Mora D, Ortega Á, Pérez-Maldonado FJ, Krell T, Matilla MA.

Sci Rep. 2018 Feb 1;8(1):2102. doi: 10.1038/s41598-018-20283-7.

10.

Exploring the (Almost) Unknown: Archaeal Two-Component Systems.

Krell T.

J Bacteriol. 2018 Mar 12;200(7). pii: e00774-17. doi: 10.1128/JB.00774-17. Print 2018 Apr 1.

11.

Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa.

Ortega DR, Fleetwood AD, Krell T, Harwood CS, Jensen GJ, Zhulin IB.

Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12809-12814. doi: 10.1073/pnas.1708842114. Epub 2017 Nov 13.

12.

Sensory Repertoire of Bacterial Chemoreceptors.

Ortega Á, Zhulin IB, Krell T.

Microbiol Mol Biol Rev. 2017 Oct 25;81(4). pii: e00033-17. doi: 10.1128/MMBR.00033-17. Print 2017 Dec. Review.

13.

The effect of bacterial chemotaxis on host infection and pathogenicity.

Matilla MA, Krell T.

FEMS Microbiol Rev. 2018 Jan 1;42(1). doi: 10.1093/femsre/fux052. Review.

PMID:
29069367
14.

Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa.

Daddaoua A, Corral-Lugo A, Ramos JL, Krell T.

Environ Microbiol. 2017 Sep;19(9):3721-3733. doi: 10.1111/1462-2920.13871. Epub 2017 Aug 24.

PMID:
28752954
15.

Metabolic Value Chemoattractants Are Preferentially Recognized at Broad Ligand Range Chemoreceptor of Pseudomonas putida KT2440.

Fernández M, Matilla MA, Ortega Á, Krell T.

Front Microbiol. 2017 May 31;8:990. doi: 10.3389/fmicb.2017.00990. eCollection 2017.

16.

Recent advances and future prospects in bacterial and archaeal locomotion and signal transduction.

Bardy SL, Briegel A, Rainville S, Krell T.

J Bacteriol. 2017 May 8. pii: JB.00203-17. doi: 10.1128/JB.00203-17. [Epub ahead of print]

17.

Riboswitches as Potential Targets for the Development of Anti-Biofilm Drugs.

Reyes-Darias JA, Krell T.

Curr Top Med Chem. 2017 Apr 7. doi: 10.2174/1568026617666170407163517. [Epub ahead of print]

PMID:
28403796
18.

Genome Sequence of Serratia marcescens MSU97, a Plant-Associated Bacterium That Makes Multiple Antibiotics.

Matilla MA, Udaondo Z, Krell T, Salmond GP.

Genome Announc. 2017 Mar 2;5(9). pii: e01752-16. doi: 10.1128/genomeA.01752-16.

19.

Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes.

Bueno E, Robles EF, Torres MJ, Krell T, Bedmar EJ, Delgado MJ, Mesa S.

Nitric Oxide. 2017 Aug 1;68:137-149. doi: 10.1016/j.niox.2017.02.002. Epub 2017 Feb 3.

PMID:
28167162
20.

Chemoreceptor-based signal sensing.

Matilla MA, Krell T.

Curr Opin Biotechnol. 2017 Jun;45:8-14. doi: 10.1016/j.copbio.2016.11.021. Epub 2017 Jan 11. Review.

PMID:
28088095

Supplemental Content

Support Center