Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 39

1.

Interleukin-6 trans-signaling contributes to chronic hypoxia-induced pulmonary hypertension.

Maston LD, Jones DT, Giermakowska W, Resta TC, Ramiro-Diaz J, Howard TA, Jernigan NL, Herbert L, Maurice AA, Gonzalez Bosc LV.

Pulm Circ. 2018 Jul-Sep;8(3):2045894018780734. doi: 10.1177/2045894018780734. Epub 2018 May 16.

2.

Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses.

Detweiler ND, Vigil KG, Resta TC, Walker BR, Jernigan NL.

PLoS One. 2018 Feb 23;13(2):e0192724. doi: 10.1371/journal.pone.0192724. eCollection 2018.

3.

Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia.

Weise-Cross L, Sands MA, Sheak JR, Broughton BRS, Snow JB, Gonzalez Bosc LV, Jernigan NL, Walker BR, Resta TC.

Am J Physiol Heart Circ Physiol. 2018 May 1;314(5):H1011-H1021. doi: 10.1152/ajpheart.00664.2017. Epub 2018 Jan 26.

PMID:
29373038
4.

Reduced membrane cholesterol after chronic hypoxia limits Orai1-mediated pulmonary endothelial Ca2+ entry.

Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC.

Am J Physiol Heart Circ Physiol. 2018 Feb 1;314(2):H359-H369. doi: 10.1152/ajpheart.00540.2017. Epub 2017 Nov 3.

PMID:
29101179
5.

RhoA increases ASIC1a plasma membrane localization and calcium influx in pulmonary arterial smooth muscle cells following chronic hypoxia.

Herbert LM, Resta TC, Jernigan NL.

Am J Physiol Cell Physiol. 2018 Feb 1;314(2):C166-C176. doi: 10.1152/ajpcell.00159.2017. Epub 2017 Oct 25.

PMID:
29070491
6.

Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension.

Jernigan NL, Resta TC, Gonzalez Bosc LV.

Adv Exp Med Biol. 2017;967:83-103. doi: 10.1007/978-3-319-63245-2_7.

PMID:
29047083
7.

Enhanced NO-dependent pulmonary vasodilation limits increased vasoconstrictor sensitivity in neonatal chronic hypoxia.

Sheak JR, Weise-Cross L, deKay RJ, Walker BR, Jernigan NL, Resta TC.

Am J Physiol Heart Circ Physiol. 2017 Oct 1;313(4):H828-H838. doi: 10.1152/ajpheart.00123.2017. Epub 2017 Jul 21.

PMID:
28733445
8.

Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension.

Jernigan NL, Naik JS, Weise-Cross L, Detweiler ND, Herbert LM, Yellowhair TR, Resta TC.

PLoS One. 2017 Jun 30;12(6):e0180455. doi: 10.1371/journal.pone.0180455. eCollection 2017.

9.

Reduced membrane cholesterol limits pulmonary endothelial Ca2+ entry after chronic hypoxia.

Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC.

Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1176-H1184. doi: 10.1152/ajpheart.00097.2017. Epub 2017 Mar 31.

10.

ASIC1-mediated calcium entry stimulates NFATc3 nuclear translocation via PICK1 coupling in pulmonary arterial smooth muscle cells.

Gonzalez Bosc LV, Plomaritas DR, Herbert LM, Giermakowska W, Browning C, Jernigan NL.

Am J Physiol Lung Cell Mol Physiol. 2016 Jul 1;311(1):L48-58. doi: 10.1152/ajplung.00040.2016. Epub 2016 May 17.

11.

PICK1/calcineurin suppress ASIC1-mediated Ca2+ entry in rat pulmonary arterial smooth muscle cells.

Herbert LM, Nitta CH, Yellowhair TR, Browning C, Gonzalez Bosc LV, Resta TC, Jernigan NL.

Am J Physiol Cell Physiol. 2016 Mar 1;310(5):C390-400. doi: 10.1152/ajpcell.00091.2015. Epub 2015 Dec 23.

12.

Smooth muscle acid-sensing ion channel 1: pathophysiological implication in hypoxic pulmonary hypertension.

Jernigan NL.

Exp Physiol. 2015 Feb 1;100(2):111-20. doi: 10.1113/expphysiol.2014.081612. Epub 2015 Jan 14. Review.

13.

Mechanisms of NFATc3 activation by increased superoxide and reduced hydrogen peroxide in pulmonary arterial smooth muscle.

Ramiro-Diaz JM, Giermakowska W, Weaver JM, Jernigan NL, Gonzalez Bosc LV.

Am J Physiol Cell Physiol. 2014 Nov 15;307(10):C928-38. doi: 10.1152/ajpcell.00244.2014. Epub 2014 Aug 27.

14.

Chronic hypoxia limits H2O2-induced inhibition of ASIC1-dependent store-operated calcium entry in pulmonary arterial smooth muscle.

Plomaritas DR, Herbert LM, Yellowhair TR, Resta TC, Gonzalez Bosc LV, Walker BR, Jernigan NL.

Am J Physiol Lung Cell Mol Physiol. 2014 Sep 1;307(5):L419-30. doi: 10.1152/ajplung.00095.2014. Epub 2014 Jul 3.

15.

Role of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension.

Nitta CH, Osmond DA, Herbert LM, Beasley BF, Resta TC, Walker BR, Jernigan NL.

Am J Physiol Heart Circ Physiol. 2014 Jan 1;306(1):H41-52. doi: 10.1152/ajpheart.00269.2013. Epub 2013 Nov 1.

16.

Calcium homeostasis and sensitization in pulmonary arterial smooth muscle.

Jernigan NL, Resta TC.

Microcirculation. 2014 Apr;21(3):259-71. doi: 10.1111/micc.12096. Review.

PMID:
24118444
17.

Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2.

Norton CE, Broughton BR, Jernigan NL, Walker BR, Resta TC.

Antioxid Redox Signal. 2013 May 10;18(14):1777-88. doi: 10.1089/ars.2012.4836. Epub 2012 Oct 18.

18.

Chronic hypoxia upregulates pulmonary arterial ASIC1: a novel mechanism of enhanced store-operated Ca2+ entry and receptor-dependent vasoconstriction.

Jernigan NL, Herbert LM, Walker BR, Resta TC.

Am J Physiol Cell Physiol. 2012 Mar 15;302(6):C931-40. doi: 10.1152/ajpcell.00332.2011. Epub 2011 Dec 28.

19.

Intermittent hypoxia augments pulmonary vascular smooth muscle reactivity to NO: regulation by reactive oxygen species.

Norton CE, Jernigan NL, Kanagy NL, Walker BR, Resta TC.

J Appl Physiol (1985). 2011 Oct;111(4):980-8. doi: 10.1152/japplphysiol.01286.2010. Epub 2011 Jul 14.

20.

Reactive oxygen species and RhoA signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension.

Resta TC, Broughton BR, Jernigan NL.

Adv Exp Med Biol. 2010;661:355-73. doi: 10.1007/978-1-60761-500-2_23. Review.

PMID:
20204742

Supplemental Content

Loading ...
Support Center