Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 182

1.

Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells.

Baek J, Roh HS, Baek KH, Lee S, Lee S, Song SS, Kim KH.

J Ethnopharmacol. 2018 May 22;224:63-75. doi: 10.1016/j.jep.2018.05.025. [Epub ahead of print]

PMID:
29800742
2.

Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells.

Wang C, Gao X, Santhanam RK, Chen Z, Chen Y, Xu L, Wang C, Ferri N, Chen H.

Food Chem Toxicol. 2018 Jun;116(Pt B):335-345. doi: 10.1016/j.fct.2018.04.047. Epub 2018 Apr 22.

PMID:
29689356
3.

Antiproliferative Activity and Cytotoxicity of Some Medicinal Wood-Destroying Mushrooms from Russia.

Shnyreva AV, Shnyreva AA, Espinoza C, Padrón JM, Trigos Á.

Int J Med Mushrooms. 2018;20(1):1-11. doi: 10.1615/IntJMedMushrooms.2018025250.

PMID:
29604909
4.

Chaga ( Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B).

Géry A, Dubreule C, André V, Rioult JP, Bouchart V, Heutte N, Eldin de Pécoulas P, Krivomaz T, Garon D.

Integr Cancer Ther. 2018 Feb 1:1534735418757912. doi: 10.1177/1534735418757912. [Epub ahead of print]

PMID:
29484963
5.

Structural characterization of bioactive heteropolysaccharides from the medicinal fungus Inonotus obliquus (Chaga).

Wold CW, Kjeldsen C, Corthay A, Rise F, Christensen BE, Duus JØ, Inngjerdingen KT.

Carbohydr Polym. 2018 Apr 1;185:27-40. doi: 10.1016/j.carbpol.2017.12.041. Epub 2017 Dec 20.

PMID:
29421057
6.

Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus.

Wang C, Li W, Chen Z, Gao X, Yuan G, Pan Y, Chen H.

Food Res Int. 2018 Jan;103:280-288. doi: 10.1016/j.foodres.2017.10.058. Epub 2017 Oct 31.

PMID:
29389616
7.

Inotodiol suppresses proliferation of breast cancer in rat model of type 2 diabetes mellitus via downregulation of β-catenin signaling.

Zhang X, Bao C, Zhang J.

Biomed Pharmacother. 2018 Mar;99:142-150. doi: 10.1016/j.biopha.2017.12.084.

PMID:
29331760
8.

Growth-Inhibitory and Immunomodulatory Activities of Wild Mushrooms from North-Central British Columbia (Canada).

Smith A, Javed S, Barad A, Myhre V, Li WM, Reimer K, Massicotte HB, Tackaberry LE, Payne GW, Egger KN, Lee CH.

Int J Med Mushrooms. 2017;19(6):485-497. doi: 10.1615/IntJMedMushrooms.v19.i6.10.

PMID:
29199559
9.

The mast cell stabilizing activity of Chaga mushroom critical for its therapeutic effect on food allergy is derived from inotodiol.

Nguyet TMN, Lomunova M, Le BV, Lee JS, Park SK, Kang JS, Kim YH, Hwang I.

Int Immunopharmacol. 2018 Jan;54:286-295. doi: 10.1016/j.intimp.2017.11.025. Epub 2017 Nov 24.

PMID:
29175507
10.

Inonotus obliquus extract induces apoptosis in the human colorectal carcinoma's HCT-116 cell line.

Tsai CC, Li YS, Lin PP.

Biomed Pharmacother. 2017 Dec;96:1119-1126. doi: 10.1016/j.biopha.2017.11.111. Epub 2017 Nov 27.

PMID:
29174853
11.

Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway.

Wang J, Wang C, Li S, Li W, Yuan G, Pan Y, Chen H.

Biomed Pharmacother. 2017 Nov;95:1669-1677. doi: 10.1016/j.biopha.2017.09.104. Epub 2017 Oct 6.

PMID:
28954386
12.

Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification.

Xu X, Lin M, Zang Q, Shi S.

Bioresour Technol. 2018 Jan;247:88-95. doi: 10.1016/j.biortech.2017.08.192. Epub 2017 Sep 1.

PMID:
28946099
13.

Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes.

Wang J, Hu W, Li L, Huang X, Liu Y, Wang D, Teng L.

PLoS One. 2017 Jun 29;12(6):e0180476. doi: 10.1371/journal.pone.0180476. eCollection 2017.

14.

Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation.

Xu X, Xu Z, Shi S, Lin M.

Bioresour Technol. 2017 Oct;241:415-423. doi: 10.1016/j.biortech.2017.05.087. Epub 2017 May 18.

PMID:
28582764
15.

Effects of the herb mixture, DTS20, on oxidative stress and plasma alcoholic metabolites after alcohol consumption in healthy young men.

Hong YH.

Integr Med Res. 2016 Dec;5(4):309-316. doi: 10.1016/j.imr.2015.10.001. Epub 2015 Oct 13.

16.

Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice.

Hu Y, Teng C, Yu S, Wang X, Liang J, Bai X, Dong L, Song T, Yu M, Qu J.

AMB Express. 2017 Dec;7(1):39. doi: 10.1186/s13568-017-0341-1. Epub 2017 Feb 14.

17.

Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice.

Wang C, Chen Z, Pan Y, Gao X, Chen H.

Food Chem Toxicol. 2017 Oct;108(Pt B):498-509. doi: 10.1016/j.fct.2017.01.007. Epub 2017 Jan 11.

PMID:
28087233
19.

Identification of Inonotus obliquus polysaccharide with broad-spectrum antiviral activity against multi-feline viruses.

Tian J, Hu X, Liu D, Wu H, Qu L.

Int J Biol Macromol. 2017 Feb;95:160-167. doi: 10.1016/j.ijbiomac.2016.11.054. Epub 2016 Nov 16.

PMID:
27865960
20.

Inhibition of Murine Norovirus and Feline Calicivirus by Edible Herbal Extracts.

Seo DJ, Choi C.

Food Environ Virol. 2017 Mar;9(1):35-44. doi: 10.1007/s12560-016-9269-x. Epub 2016 Nov 2.

PMID:
27807684

Supplemental Content

Loading ...
Support Center