Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 28

1.

GapmeR-Mediated Gene Silencing in Motile T-Cells.

Fazil MHUT, Ong ST, Chalasani MLS, Kizhakeyil A, Verma NK.

Methods Mol Biol. 2019;1930:67-73. doi: 10.1007/978-1-4939-9036-8_9.

PMID:
30610600
2.

RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides.

Hori SI, Mitsuoka Y, Kugimiya A.

Nucleic Acid Ther. 2019 Feb;29(1):44-50. doi: 10.1089/nat.2018.0741. Epub 2018 Dec 1.

PMID:
30508397
3.

Structural insight into antisense gapmer-RNA oligomer duplexes through molecular dynamics simulations.

Uppuladinne MVN, Sonavane UB, Deka RC, Joshi RR.

J Biomol Struct Dyn. 2018 Nov 1:1-14. doi: 10.1080/07391102.2018.1498390. [Epub ahead of print]

PMID:
30284504
4.

Role of Computationally Evaluated Target Specificity in the Hepatotoxicity of Gapmer Antisense Oligonucleotides.

Kasuya T, Kugimiya A.

Nucleic Acid Ther. 2018 Oct;28(5):312-317. doi: 10.1089/nat.2018.0724. Epub 2018 Aug 10.

PMID:
30095329
5.

Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury.

Moreno PMD, Ferreira AR, Salvador D, Rodrigues MT, Torrado M, Carvalho ED, Tedebark U, Sousa MM, Amaral IF, Wengel J, Pêgo AP.

Mol Ther Nucleic Acids. 2018 Jun 1;11:393-406. doi: 10.1016/j.omtn.2018.03.009. Epub 2018 Mar 20.

6.

Palmitoylated phosphodiester gapmer designs with albumin binding capacity and maintained in vitro gene silencing activity.

Cai Y, Makarova AM, Wengel J, Howard KA.

J Gene Med. 2018 Jul;20(7-8):e3025. doi: 10.1002/jgm.3025. Epub 2018 Jun 25.

PMID:
29800498
7.

A Sensitive In Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides.

Dieckmann A, Hagedorn PH, Burki Y, Brügmann C, Berrera M, Ebeling M, Singer T, Schuler F.

Mol Ther Nucleic Acids. 2018 Mar 2;10:45-54. doi: 10.1016/j.omtn.2017.11.004. Epub 2017 Nov 14.

8.

Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity.

Amodio N, Stamato MA, Juli G, Morelli E, Fulciniti M, Manzoni M, Taiana E, Agnelli L, Cantafio MEG, Romeo E, Raimondi L, Caracciolo D, Zuccalà V, Rossi M, Neri A, Munshi NC, Tagliaferri P, Tassone P.

Leukemia. 2018 Sep;32(9):1948-1957. doi: 10.1038/s41375-018-0067-3. Epub 2018 Feb 22.

9.

Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins.

Shen W, De Hoyos CL, Sun H, Vickers TA, Liang XH, Crooke ST.

Nucleic Acids Res. 2018 Mar 16;46(5):2204-2217. doi: 10.1093/nar/gky060.

10.

A gapmer aptamer nanobiosensor for real-time monitoring of transcription and translation in single cells.

Wang S, Xiao Y, Zhang DD, Wong PK.

Biomaterials. 2018 Feb;156:56-64. doi: 10.1016/j.biomaterials.2017.11.026. Epub 2017 Nov 24.

11.

Influence of mismatched and bulged nucleotides on SNP-preferential RNase H cleavage of RNA-antisense gapmer heteroduplexes.

Magner D, Biala E, Lisowiec-Wachnicka J, Kierzek R.

Sci Rep. 2017 Oct 2;7(1):12532. doi: 10.1038/s41598-017-12844-z.

12.

Gapmer Antisense Oligonucleotides Suppress the Mutant Allele of COL6A3 and Restore Functional Protein in Ullrich Muscular Dystrophy.

Marrosu E, Ala P, Muntoni F, Zhou H.

Mol Ther Nucleic Acids. 2017 Sep 15;8:416-427. doi: 10.1016/j.omtn.2017.07.006. Epub 2017 Jul 8.

13.

Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation.

Hvam ML, Cai Y, Dagnæs-Hansen F, Nielsen JS, Wengel J, Kjems J, Howard KA.

Mol Ther. 2017 Jul 5;25(7):1710-1717. doi: 10.1016/j.ymthe.2017.05.009. Epub 2017 Jun 20.

14.

A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis.

Cai Y, López-Ruiz E, Wengel J, Creemers LB, Howard KA.

J Control Release. 2017 May 10;253:153-159. doi: 10.1016/j.jconrel.2017.03.004. Epub 2017 Mar 6.

PMID:
28274742
15.

Lipid Nanoparticles Loaded with an Antisense Oligonucleotide Gapmer Against Bcl-2 for Treatment of Lung Cancer.

Cheng X, Liu Q, Li H, Kang C, Liu Y, Guo T, Shang K, Yan C, Cheng G, Lee RJ.

Pharm Res. 2017 Feb;34(2):310-320. doi: 10.1007/s11095-016-2063-5. Epub 2016 Nov 28.

PMID:
27896589
16.

GapmeR cellular internalization by macropinocytosis induces sequence-specific gene silencing in human primary T-cells.

Fazil MH, Ong ST, Chalasani ML, Low JH, Kizhakeyil A, Mamidi A, Lim CF, Wright GD, Lakshminarayanan R, Kelleher D, Verma NK.

Sci Rep. 2016 Nov 24;6:37721. doi: 10.1038/srep37721.

17.

Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile.

Hegarty JP, Krzeminski J, Sharma AK, Guzman-Villanueva D, Weissig V, Stewart DB Sr.

Int J Nanomedicine. 2016 Aug 1;11:3607-19. doi: 10.2147/IJN.S109600. eCollection 2016.

18.

Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.

Kasuya T, Hori S, Watanabe A, Nakajima M, Gahara Y, Rokushima M, Yanagimoto T, Kugimiya A.

Sci Rep. 2016 Jul 27;6:30377. doi: 10.1038/srep30377.

19.

The crystal structure of a 2',4'-BNA(NC)[N-Me]-modified antisense gapmer in complex with the target RNA.

Kondo J, Nomura Y, Kitahara Y, Obika S, Torigoe H.

Chem Commun (Camb). 2016 Feb 7;52(11):2354-7. doi: 10.1039/c5cc08300a.

PMID:
26731288
20.

Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.

Burel SA, Hart CE, Cauntay P, Hsiao J, Machemer T, Katz M, Watt A, Bui HH, Younis H, Sabripour M, Freier SM, Hung G, Dan A, Prakash TP, Seth PP, Swayze EE, Bennett CF, Crooke ST, Henry SP.

Nucleic Acids Res. 2016 Mar 18;44(5):2093-109. doi: 10.1093/nar/gkv1210. Epub 2015 Nov 8.

Supplemental Content

Support Center