Format
Sort by
Items per page

Send to

Choose Destination

Best matches for altitude AND hypoxia AND oxygen AND tibet:

Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era. Petousi N et al. J Appl Physiol (1985). (2014)

Metabolic aspects of high-altitude adaptation in Tibetans. Ge RL et al. Exp Physiol. (2015)

Genetic evidence for high-altitude adaptation in Tibet. Simonson TS et al. Science. (2010)

Search results

Items: 1 to 20 of 111

1.

Role of ROS/Kv/HIF Axis in the Development of Hypoxia-Induced Pulmonary Hypertension.

Wu W, Li Y, Xu DQ.

Chin Med Sci J. 2017 Dec 30;32(4):253-259. doi: 10.24920/J1001-9294.2017.037.

PMID:
29301601
2.

Oxygen Supplementation Ameliorates Tibial Development via Stimulating Vascularization in Tibetan Chickens at High Altitudes.

Huang S, Tong X, Rehman MU, Wang M, Zhang L, Wang L, Li J, Yang S.

Int J Biol Sci. 2017 Nov 27;13(12):1547-1559. doi: 10.7150/ijbs.22670. eCollection 2017.

3.

Divergent respiratory and cardiovascular responses to hypoxia in bar-headed geese and Andean birds.

Lague SL, Chua B, Alza L, Scott GR, Frappell PB, Zhong Y, Farrell AP, McCracken KG, Wang Y, Milsom WK.

J Exp Biol. 2017 Nov 15;220(Pt 22):4186-4194. doi: 10.1242/jeb.168799.

4.

Evolutionary significance of selected EDAR variants in Tibetan high-altitude adaptations.

Shao J, Raza MS, Zhuoma B, Zeng C.

Sci China Life Sci. 2018 Jan;61(1):68-78. doi: 10.1007/s11427-016-9045-7. Epub 2017 Aug 8.

PMID:
28795375
5.

<i>GCH1</i> plays a role in the high-altitude adaptation of Tibetans.

Guo YB, He YX, Cui CY, Ouzhu L, Baima K, Duoji Z, Deji Q, Bian B, Peng Y, Bai CJ, Gongga L, Pan YY, Qu, Kang M, Ciren Y, Baima Y, Guo W, Yang, Zhang H, Zhang XM, Zheng WS, Xu SH, Chen H, Zhao SG, Cai Y, Liu SM, Wu TY, Qi XB, Su B.

Zool Res. 2017 May 18;38(3):155-162. doi: 10.24272/j.issn.2095-8137.2017.037.

6.

Metabolic basis to Sherpa altitude adaptation.

Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ, Levett DZH, Howard DJ, Fernandez BO, Burgess SL, Ament Z, Gilbert-Kawai ET, Vercueil A, Landis BD, Mitchell K, Mythen MG, Branco C, Johnson RS, Feelisch M, Montgomery HE, Griffin JL, Grocott MPW, Gnaiger E, Martin DS, Murray AJ.

Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6382-6387. doi: 10.1073/pnas.1700527114. Epub 2017 May 22.

7.

MEDEX2015: Greater Sea-Level Fitness Is Associated with Lower Sense of Effort During Himalayan Trekking Without Worse Acute Mountain Sickness.

Rossetti GMK, Macdonald JH, Smith M, Jackson AR, Callender N, Newcombe HK, Storey HM, Willis S, van den Beukel J, Woodward J, Pollard J, Wood B, Newton V, Virian J, Haswell O, Oliver SJ.

High Alt Med Biol. 2017 Jun;18(2):152-162. doi: 10.1089/ham.2016.0088. Epub 2017 Apr 10.

PMID:
28394182
8.

Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird.

Pan S, Zhang T, Rong Z, Hu L, Gu Z, Wu Q, Dong S, Liu Q, Lin Z, Deutschova L, Li X, Dixon A, Bruford MW, Zhan X.

Mol Ecol. 2017 Jun;26(11):2993-3010. doi: 10.1111/mec.14090. Epub 2017 Apr 1.

PMID:
28277617
9.

Rhodiola crenulata extract counteracts the effect of hypobaric hypoxia in rat heart via redirection of the nitric oxide and arginase 1 pathway.

Hsu SW, Chang TC, Wu YK, Lin KT, Shi LS, Lee SY.

BMC Complement Altern Med. 2017 Jan 7;17(1):29. doi: 10.1186/s12906-016-1524-z.

10.

Differential responsiveness in VEGF receptor subtypes to hypoxic stress in various tissues of plateau animals.

Xie HC, Li JG, He JP.

Physiol Res. 2017 May 4;66(2):357-362. Epub 2016 Dec 16.

11.

Effects of Tibetan turnip (Brassica rapa L.) on promoting hypoxia-tolerance in healthy humans.

Chu B, Chen C, Li J, Chen X, Li Y, Tang W, Jin L, Zhang Y.

J Ethnopharmacol. 2017 Jan 4;195:246-254. doi: 10.1016/j.jep.2016.11.028. Epub 2016 Nov 14.

PMID:
27856303
12.
13.

Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika.

Wei D, Wei L, Li X, Wang Y, Wei L.

Int J Environ Res Public Health. 2016 Aug 1;13(8). pii: E773. doi: 10.3390/ijerph13080773.

14.

Why Are High-Altitude Natives So Strong at Altitude? Maximal Oxygen Transport to the Muscle Cell in Altitude Natives.

Lundby C, Calbet JA.

Adv Exp Med Biol. 2016;903:65-81. doi: 10.1007/978-1-4899-7678-9_5. Review.

PMID:
27343089
15.

The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α.

Arsenault PR, Song D, Chung YJ, Khurana TS, Lee FS.

Mol Cell Biol. 2016 Aug 26;36(18):2328-43. doi: 10.1128/MCB.00090-16. Print 2016 Sep 15.

16.

Changes in the Anatomic and Microscopic Structure and the Expression of HIF-1α and VEGF of the Yak Heart with Aging and Hypoxia.

He Y, Yu S, Hu J, Cui Y, Liu P.

PLoS One. 2016 Feb 25;11(2):e0149947. doi: 10.1371/journal.pone.0149947. eCollection 2016.

17.

Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.

Zhang Q, Gou W, Wang X, Zhang Y, Ma J, Zhang H, Zhang Y, Zhang H.

Genome Biol Evol. 2016 Feb 23;8(3):765-76. doi: 10.1093/gbe/evw032.

18.

Exhaled nitric oxide is associated with postnatal adaptation to hypoxia in Tibetan and non-Tibetan newborn infants.

Wu P, Shanminna, Liang K, Yue H, Qian L, Sun B.

Acta Paediatr. 2016 May;105(5):475-82. doi: 10.1111/apa.13331. Epub 2016 Feb 5.

PMID:
26776923
19.

Analysis of the erythropoietin of a Tibetan Plateau schizothoracine fish (Gymnocypris dobula) reveals enhanced cytoprotection function in hypoxic environments.

Xu Q, Zhang C, Zhang D, Jiang H, Peng S, Liu Y, Zhao K, Wang C, Chen L.

BMC Evol Biol. 2016 Jan 15;16:11. doi: 10.1186/s12862-015-0581-0.

20.

Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C₄ of the Plateau Pika (Ochotona curzoniae).

Wang Y, Wei L, Wei D, Li X, Xu L, Wei L.

Int J Mol Sci. 2016 Jan 7;17(1). pii: E39. doi: 10.3390/ijms17010039.

Supplemental Content

Loading ...
Support Center