Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 37

1.

The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries.

du Plessis K, Young PR, Eyéghé-Bickong HA, Vivier MA.

Front Plant Sci. 2017 Jul 20;8:1261. doi: 10.3389/fpls.2017.01261. eCollection 2017.

2.

Combining hydrothermal pretreatment with enzymes de-pectinates and exposes the innermost xyloglucan-rich hemicellulose layers of wine grape pomace.

Zietsman AJJ, Moore JP, Fangel JU, Willats WGT, Vivier MA.

Food Chem. 2017 Oct 1;232:340-350. doi: 10.1016/j.foodchem.2017.04.015. Epub 2017 Apr 6.

PMID:
28490083
3.

Towards an open grapevine information system.

Adam-Blondon AF, Alaux M, Pommier C, Cantu D, Cheng ZM, Cramer GR, Davies C, Delrot S, Deluc L, Di Gaspero G, Grimplet J, Fennell A, Londo JP, Kersey P, Mattivi F, Naithani S, Neveu P, Nikolski M, Pezzotti M, Reisch BI, Töpfer R, Vivier MA, Ware D, Quesneville H.

Hortic Res. 2016 Nov 23;3:16056. eCollection 2016. Review.

4.

Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking.

Gao Y, Fangel JU, Willats WGT, Vivier MA, Moore JP.

Carbohydr Polym. 2016 Nov 5;152:510-519. doi: 10.1016/j.carbpol.2016.05.115. Epub 2016 Jun 13.

PMID:
27516299
5.

The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides.

Weiller F, Moore JP, Young P, Driouich A, Vivier MA.

Ann Bot. 2017 Mar 1;119(5):803-813. doi: 10.1093/aob/mcw141.

6.

Field-Grown Grapevine Berries Use Carotenoids and the Associated Xanthophyll Cycles to Acclimate to UV Exposure Differentially in High and Low Light (Shade) Conditions.

Joubert C, Young PR, Eyéghé-Bickong HA, Vivier MA.

Front Plant Sci. 2016 Jun 10;7:786. doi: 10.3389/fpls.2016.00786. eCollection 2016.

7.

Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes.

Mutawila C, Stander C, Halleen F, Vivier MA, Mostert L.

Protoplasma. 2017 Mar;254(2):863-879. doi: 10.1007/s00709-016-0997-4. Epub 2016 Jun 28.

PMID:
27352313
8.

Effect of Commercial Enzymes on Berry Cell Wall Deconstruction in the Context of Intravineyard Ripeness Variation under Winemaking Conditions.

Gao Y, Fangel JU, Willats WG, Vivier MA, Moore JP.

J Agric Food Chem. 2016 May 18;64(19):3862-72. doi: 10.1021/acs.jafc.6b00917. Epub 2016 May 5.

PMID:
27124698
9.

Inactive dry yeast application on grapes modify Sauvignon Blanc wine aroma.

Šuklje K, Antalick G, Buica A, Coetzee ZA, Brand J, Schmidtke LM, Vivier MA.

Food Chem. 2016 Apr 15;197 Pt B:1073-84. doi: 10.1016/j.foodchem.2015.11.105. Epub 2015 Nov 26.

PMID:
26675843
10.

Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure.

Young PR, Eyeghe-Bickong HA, du Plessis K, Alexandersson E, Jacobson DA, Coetzee Z, Deloire A, Vivier MA.

Plant Physiol. 2016 Mar;170(3):1235-54. doi: 10.1104/pp.15.01775. Epub 2015 Dec 1.

11.

Dissecting the polysaccharide-rich grape cell wall changes during winemaking using combined high-throughput and fractionation methods.

Gao Y, Fangel JU, Willats WG, Vivier MA, Moore JP.

Carbohydr Polym. 2015 Nov 20;133:567-77. doi: 10.1016/j.carbpol.2015.07.026. Epub 2015 Jul 22.

PMID:
26344315
12.

Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

Zietsman AJ, Moore JP, Fangel JU, Willats WG, Vivier MA.

J Agric Food Chem. 2015 Sep 23;63(37):8267-74. doi: 10.1021/acs.jafc.5b02847. Epub 2015 Sep 10.

PMID:
26309153
13.

A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.

Musingarabwi DM, Nieuwoudt HH, Young PR, Eyéghè-Bickong HA, Vivier MA.

Food Chem. 2016 Jan 1;190:253-262. doi: 10.1016/j.foodchem.2015.05.080. Epub 2015 May 18.

PMID:
26212968
14.

Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes.

Zietsman AJ, Moore JP, Fangel JU, Willats WG, Trygg J, Vivier MA.

J Agric Food Chem. 2015 Mar 18;63(10):2798-810. doi: 10.1021/jf505200m. Epub 2015 Mar 3.

PMID:
25693868
15.

Field-omics-understanding large-scale molecular data from field crops.

Alexandersson E, Jacobson D, Vivier MA, Weckwerth W, Andreasson E.

Front Plant Sci. 2014 Jun 20;5:286. doi: 10.3389/fpls.2014.00286. eCollection 2014.

16.

Pectic-β(1,4)-galactan, extensin and arabinogalactan-protein epitopes differentiate ripening stages in wine and table grape cell walls.

Moore JP, Fangel JU, Willats WG, Vivier MA.

Ann Bot. 2014 Oct;114(6):1279-94. doi: 10.1093/aob/mcu053. Epub 2014 May 7.

17.

Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods.

Moore JP, Nguema-Ona E, Fangel JU, Willats WG, Hugo A, Vivier MA.

Carbohydr Polym. 2014 Jan;99:190-8. doi: 10.1016/j.carbpol.2013.08.013. Epub 2013 Aug 17.

PMID:
24274496
18.

Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family.

Lashbrooke JG, Young PR, Dockrall SJ, Vasanth K, Vivier MA.

BMC Plant Biol. 2013 Oct 9;13:156. doi: 10.1186/1471-2229-13-156.

19.

Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection.

Nguema-Ona E, Moore JP, Fagerström AD, Fangel JU, Willats WG, Hugo A, Vivier MA.

BMC Plant Biol. 2013 Mar 18;13:46. doi: 10.1186/1471-2229-13-46.

20.

Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis.

Joubert DA, de Lorenzo G, Vivier MA.

J Plant Res. 2013 Mar;126(2):267-81. doi: 10.1007/s10265-012-0515-5. Epub 2012 Aug 30.

PMID:
22932820

Supplemental Content

Loading ...
Support Center