Format
Sort by

Send to

Choose Destination

Search results

Items: 1 to 20 of 41

1.

Corrigendum: Rapid generation of hypomorphic mutations.

Arthur LL, Chung JJ, Janakirama P, Keefer KM, Kolotilin I, Pavlovic-Djuranovic S, Chalker DL, Grbic V, Green R, Menassa R, True HL, Skeath JB, Djuranovic S.

Nat Commun. 2017 Feb 16;8:14705. doi: 10.1038/ncomms14705. No abstract available.

PMID:
28205645
2.

Rapid generation of hypomorphic mutations.

Arthur LL, Chung JJ, Jankirama P, Keefer KM, Kolotilin I, Pavlovic-Djuranovic S, Chalker DL, Grbic V, Green R, Menassa R, True HL, Skeath JB, Djuranovic S.

Nat Commun. 2017 Jan 20;8:14112. doi: 10.1038/ncomms14112.

3.

Amyloid Prions in Fungi.

Saupe SJ, Jarosz DF, True HL.

Microbiol Spectr. 2016 Dec;4(6). doi: 10.1128/microbiolspec.FUNK-0029-2016.

PMID:
28087950
4.

Prion-Associated Toxicity is Rescued by Elimination of Cotranslational Chaperones.

Keefer KM, True HL.

PLoS Genet. 2016 Nov 9;12(11):e1006431. doi: 10.1371/journal.pgen.1006431.

5.

Myofibrillar disruption and RNA-binding protein aggregation in a mouse model of limb-girdle muscular dystrophy 1D.

Bengoechea R, Pittman SK, Tuck EP, True HL, Weihl CC.

Hum Mol Genet. 2015 Dec 1;24(23):6588-602. doi: 10.1093/hmg/ddv363.

6.

Prion strains and amyloid polymorphism influence phenotypic variation.

Stein KC, True HL.

PLoS Pathog. 2014 Sep 4;10(9):e1004328. doi: 10.1371/journal.ppat.1004328. Review. No abstract available.

7.

Structural variants of yeast prions show conformer-specific requirements for chaperone activity.

Stein KC, True HL.

Mol Microbiol. 2014 Sep;93(6):1156-71. doi: 10.1111/mmi.12725.

8.

Myopathy-causing mutations in an HSP40 chaperone disrupt processing of specific client conformers.

Stein KC, Bengoechea R, Harms MB, Weihl CC, True HL.

J Biol Chem. 2014 Jul 25;289(30):21120-30.

9.

Extensive diversity of prion strains is defined by differential chaperone interactions and distinct amyloidogenic regions.

Stein KC, True HL.

PLoS Genet. 2014 May 8;10(5):e1004337. doi: 10.1371/journal.pgen.1004337.

10.

Wild yeast harbour a variety of distinct amyloid structures with strong prion-inducing capabilities.

Westergard L, True HL.

Mol Microbiol. 2014 Apr;92(1):183-93. doi: 10.1111/mmi.12543.

11.

Extracellular environment modulates the formation and propagation of particular amyloid structures.

Westergard L, True HL.

Mol Microbiol. 2014 May;92(4):698-715. doi: 10.1111/mmi.12579.

12.

Regulation of the Hsp104 middle domain activity is critical for yeast prion propagation.

Dulle JE, Stein KC, True HL.

PLoS One. 2014 Jan 23;9(1):e87521. doi: 10.1371/journal.pone.0087521.

13.

Spontaneous variants of the [RNQ+] prion in yeast demonstrate the extensive conformational diversity possible with prion proteins.

Huang VJ, Stein KC, True HL.

PLoS One. 2013 Oct 25;8(10):e79582. doi: 10.1371/journal.pone.0079582.

14.

Soluble oligomers are sufficient for transmission of a yeast prion but do not confer phenotype.

Dulle JE, Bouttenot RE, Underwood LA, True HL.

J Cell Biol. 2013 Oct 28;203(2):197-204. doi: 10.1083/jcb.201307040.

15.

Low activity of select Hsp104 mutants is sufficient to propagate unstable prion variants.

Dulle JE, True HL.

Prion. 2013 Sep-Oct;7(5):394-403. doi: 10.4161/pri.26547.

16.

Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones.

Udan-Johns M, Bengoechea R, Bell S, Shao J, Diamond MI, True HL, Weihl CC, Baloh RH.

Hum Mol Genet. 2014 Jan 1;23(1):157-70. doi: 10.1093/hmg/ddt408.

17.

The [RNQ+] prion: a model of both functional and pathological amyloid.

Stein KC, True HL.

Prion. 2011 Oct-Dec;5(4):291-8. doi: 10.4161/pri.18213. Review.

18.

Analysis of the [RNQ+] prion reveals stability of amyloid fibers as the key determinant of yeast prion variant propagation.

Kalastavadi T, True HL.

J Biol Chem. 2010 Jul 2;285(27):20748-55. doi: 10.1074/jbc.M110.115303.

19.

The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system.

Lancaster AK, Bardill JP, True HL, Masel J.

Genetics. 2010 Feb;184(2):393-400. doi: 10.1534/genetics.109.110213.

20.

The Sua5 protein is essential for normal translational regulation in yeast.

Lin CA, Ellis SR, True HL.

Mol Cell Biol. 2010 Jan;30(1):354-63. doi: 10.1128/MCB.00754-09.

Items per page

Supplemental Content

Support Center