Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 95

1.

Complete Genome Sequence of Industrial Dairy Strain Streptococcus thermophilus DGCC 7710.

Hatmaker EA, Riley LA, O'Dell KB, Papanek B, Graveley BR, Garrett SC, Wei Y, Terns MP, Guss AM.

Genome Announc. 2018 Feb 8;6(6). pii: e01587-17. doi: 10.1128/genomeA.01587-17.

2.

Phylogenomics of Cas4 family nucleases.

Hudaiberdiev S, Shmakov S, Wolf YI, Terns MP, Makarova KS, Koonin EV.

BMC Evol Biol. 2017 Nov 28;17(1):232. doi: 10.1186/s12862-017-1081-1.

3.

Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus.

Shiimori M, Garrett SC, Chambers DP, Glover CVC 3rd, Graveley BR, Terns MP.

Nucleic Acids Res. 2017 Nov 2;45(19):11281-11294. doi: 10.1093/nar/gkx839.

4.

Programmable type III-A CRISPR-Cas DNA targeting modules.

Ichikawa HT, Cooper JC, Lo L, Potter J, Terns RM, Terns MP.

PLoS One. 2017 Apr 25;12(4):e0176221. doi: 10.1371/journal.pone.0176221. eCollection 2017.

5.

Visualization of Human Telomerase Localization by Fluorescence Microscopy Techniques.

Abreu E, Terns RM, Terns MP.

Methods Mol Biol. 2017;1587:113-125. doi: 10.1007/978-1-4939-6892-3_11.

PMID:
28324503
6.

Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes.

Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T; SUSTAIN-6 Investigators.

N Engl J Med. 2016 Nov 10;375(19):1834-1844. Epub 2016 Sep 15.

7.

Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.

Majumdar S, Ligon M, Skinner WC, Terns RM, Terns MP.

Extremophiles. 2017 Jan;21(1):95-107. doi: 10.1007/s00792-016-0871-5. Epub 2016 Aug 31.

8.

CRISPR Outsourcing: Commissioning IHF for Site-Specific Integration of Foreign DNA at the CRISPR Array.

Wei Y, Terns MP.

Mol Cell. 2016 Jun 16;62(6):803-804. doi: 10.1016/j.molcel.2016.06.004.

9.

Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system.

Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H, Terns RM, Terns MP.

Genes Dev. 2016 Feb 15;30(4):447-59. doi: 10.1101/gad.272153.115. Epub 2016 Feb 4.

10.

The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease.

Sheppard NF, Glover CV 3rd, Terns RM, Terns MP.

RNA. 2016 Feb;22(2):216-24. doi: 10.1261/rna.039842.113. Epub 2015 Dec 8.

11.

DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.

Elmore J, Deighan T, Westpheling J, Terns RM, Terns MP.

Nucleic Acids Res. 2015 Dec 2;43(21):10353-63. doi: 10.1093/nar/gkv1140. Epub 2015 Oct 30.

12.

An updated evolutionary classification of CRISPR-Cas systems.

Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV.

Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28. Review.

13.

Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA.

Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J.

Nucleic Acids Res. 2015 May 26;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub 2015 Apr 29.

14.

Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.

Majumdar S, Zhao P, Pfister NT, Compton M, Olson S, Glover CV 3rd, Wells L, Graveley BR, Terns RM, Terns MP.

RNA. 2015 Jun;21(6):1147-58. doi: 10.1261/rna.049130.114. Epub 2015 Apr 22.

15.

Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation.

Wei Y, Terns RM, Terns MP.

Genes Dev. 2015 Feb 15;29(4):356-61. doi: 10.1101/gad.257550.114.

16.

Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus.

Wei Y, Chesne MT, Terns RM, Terns MP.

Nucleic Acids Res. 2015 Feb 18;43(3):1749-58.

17.

Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex.

Ramia NF, Spilman M, Tang L, Shao Y, Elmore J, Hale C, Cocozaki A, Bhattacharya N, Terns RM, Terns MP, Li H, Stagg SM.

Cell Rep. 2014 Dec 11;9(5):1610-1617. doi: 10.1016/j.celrep.2014.11.007. Epub 2014 Dec 4.

18.

Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex.

Hale CR, Cocozaki A, Li H, Terns RM, Terns MP.

Genes Dev. 2014 Nov 1;28(21):2432-43. doi: 10.1101/gad.250712.114.

19.

The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus.

Carte J, Christopher RT, Smith JT, Olson S, Barrangou R, Moineau S, Glover CV 3rd, Graveley BR, Terns RM, Terns MP.

Mol Microbiol. 2014 Jul;93(1):98-112. doi: 10.1111/mmi.12644. Epub 2014 Jun 4.

20.

CRISPR-based technologies: prokaryotic defense weapons repurposed.

Terns RM, Terns MP.

Trends Genet. 2014 Mar;30(3):111-8. doi: 10.1016/j.tig.2014.01.003. Epub 2014 Feb 18. Review.

Supplemental Content

Loading ...
Support Center