Format
Sort by

Send to

Choose Destination

Search results

Items: 1 to 20 of 46

1.

A Complex Systems Approach to Causal Discovery in Psychiatry.

Saxe GN, Statnikov A, Fenyo D, Ren J, Li Z, Prasad M, Wall D, Bergman N, Briggs EC, Aliferis C.

PLoS One. 2016 Mar 30;11(3):e0151174. doi: 10.1371/journal.pone.0151174.

2.

An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation.

Ma S, Kemmeren P, Aliferis CF, Statnikov A.

Sci Rep. 2016 Mar 4;6:22558. doi: 10.1038/srep22558.

3.

Plasma levels of interleukin-1 receptor antagonist (IL1Ra) predict radiographic progression of symptomatic knee osteoarthritis.

Attur M, Statnikov A, Samuels J, Li Z, Alekseyenko AV, Greenberg JD, Krasnokutsky S, Rybak L, Lu QA, Todd J, Zhou H, Jordan JM, Kraus VB, Aliferis CF, Abramson SB.

Osteoarthritis Cartilage. 2015 Nov;23(11):1915-24. doi: 10.1016/j.joca.2015.08.006.

4.

Low-grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers.

Attur M, Krasnokutsky S, Statnikov A, Samuels J, Li Z, Friese O, Hellio Le Graverand-Gastineau MP, Rybak L, Kraus VB, Jordan JM, Aliferis CF, Abramson SB.

Arthritis Rheumatol. 2015 Nov;67(11):2905-15. doi: 10.1002/art.39279.

5.

Early identification of posttraumatic stress following military deployment: Application of machine learning methods to a prospective study of Danish soldiers.

Karstoft KI, Statnikov A, Andersen SB, Madsen T, Galatzer-Levy IR.

J Affect Disord. 2015 Sep 15;184:170-5. doi: 10.1016/j.jad.2015.05.057.

PMID:
26093830
6.

Bridging a translational gap: using machine learning to improve the prediction of PTSD.

Karstoft KI, Galatzer-Levy IR, Statnikov A, Li Z, Shalev AY; members of Jerusalem Trauma Outreach and Prevention Study (J-TOPS) group..

BMC Psychiatry. 2015 Mar 16;15:30. doi: 10.1186/s12888-015-0399-8.

7.

Molecular characterization of the peripheral airway field of cancerization in lung adenocarcinoma.

Tsay JC, Li Z, Yie TA, Wu F, Segal L, Greenberg AK, Leibert E, Weiden MD, Pass H, Munger J, Statnikov A, Tchou-Wong KM, Rom WN.

PLoS One. 2015 Feb 23;10(2):e0118132. doi: 10.1371/journal.pone.0118132.

8.

Computational Methods for Unraveling Temporal Brain Connectivity Data.

Ray B, Statnikov A, Aliferis C.

AMIA Annu Symp Proc. 2015 Nov 5;2015:2043-52.

9.

Quantitative forecasting of PTSD from early trauma responses: a Machine Learning application.

Galatzer-Levy IR, Karstoft KI, Statnikov A, Shalev AY.

J Psychiatr Res. 2014 Dec;59:68-76. doi: 10.1016/j.jpsychires.2014.08.017.

10.

De-novo learning of genome-scale regulatory networks in S. cerevisiae.

Ma S, Kemmeren P, Gresham D, Statnikov A.

PLoS One. 2014 Sep 12;9(9):e106479. doi: 10.1371/journal.pone.0106479.

11.

Information content and analysis methods for multi-modal high-throughput biomedical data.

Ray B, Henaff M, Ma S, Efstathiadis E, Peskin ER, Picone M, Poli T, Aliferis CF, Statnikov A.

Sci Rep. 2014 Mar 21;4:4411. doi: 10.1038/srep04411.

12.

Computational prediction of neutralization epitopes targeted by human anti-V3 HIV monoclonal antibodies.

Shmelkov E, Krachmarov C, Grigoryan AV, Pinter A, Statnikov A, Cardozo T.

PLoS One. 2014 Feb 25;9(2):e89987. doi: 10.1371/journal.pone.0089987.

13.

Co-expression network analysis identifies Spleen Tyrosine Kinase (SYK) as a candidate oncogenic driver in a subset of small-cell lung cancer.

Udyavar AR, Hoeksema MD, Clark JE, Zou Y, Tang Z, Li Z, Li M, Chen H, Statnikov A, Shyr Y, Liebler DC, Field J, Eisenberg R, Estrada L, Massion PP, Quaranta V.

BMC Syst Biol. 2013;7 Suppl 5:S1. doi: 10.1186/1752-0509-7-S5-S1.

14.

A comprehensive evaluation of multicategory classification methods for microbiomic data.

Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, Pei Z, Blaser MJ, Aliferis CF, Alekseyenko AV.

Microbiome. 2013 Apr 5;1(1):11. doi: 10.1186/2049-2618-1-11.

15.

Microbiomic signatures of psoriasis: feasibility and methodology comparison.

Statnikov A, Alekseyenko AV, Li Z, Henaff M, Perez-Perez GI, Blaser MJ, Aliferis CF.

Sci Rep. 2013;3:2620. doi: 10.1038/srep02620.

16.

Algorithms for Discovery of Multiple Markov Boundaries.

Statnikov A, Lytkin NI, Lemeire J, Aliferis CF.

J Mach Learn Res. 2013 Feb;14:499-566.

17.

Strategic applications of gene expression: from drug discovery/development to bedside.

Bai JP, Alekseyenko AV, Statnikov A, Wang IM, Wong PH.

AAPS J. 2013 Apr;15(2):427-37. doi: 10.1208/s12248-012-9447-1. Review.

18.

New methods for separating causes from effects in genomics data.

Statnikov A, Henaff M, Lytkin NI, Aliferis CF.

BMC Genomics. 2012;13 Suppl 8:S22. doi: 10.1186/1471-2164-13-S8-S22.

19.

Wisdom of crowds for robust gene network inference.

Marbach D, Costello JC, K├╝ffner R, Vega NM, Prill RJ, Camacho DM, Allison KR; DREAM5 Consortium., Kellis M, Collins JJ, Stolovitzky G.

Nat Methods. 2012 Jul 15;9(8):796-804. doi: 10.1038/nmeth.2016.

20.

Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome.

Feig JE, Vengrenyuk Y, Reiser V, Wu C, Statnikov A, Aliferis CF, Garabedian MJ, Fisher EA, Puig O.

PLoS One. 2012;7(6):e39790. doi: 10.1371/journal.pone.0039790.

Items per page

Supplemental Content

Loading ...
Support Center