Format
Sort by
Items per page

Send to

Choose Destination

Selected items

Items: 1 to 20 of 196

1.

Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula.

Kruse J, Gao P, Honsel A, Kreuzwieser J, Burzlaff T, Alfarraj S, Hedrich R, Rennenberg H.

Oecologia. 2014 Mar;174(3):839-51. doi: 10.1007/s00442-013-2802-9. Epub 2013 Oct 19.

PMID:
24141381
2.

Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula.

Gao P, Loeffler TS, Honsel A, Kruse J, Krol E, Scherzer S, Kreuzer I, Bemm F, Buegger F, Burzlaff T, Hedrich R, Rennenberg H.

New Phytol. 2015 Feb;205(3):1320-9. doi: 10.1111/nph.13120. Epub 2014 Oct 27.

3.

The Venus flytrap attracts insects by the release of volatile organic compounds.

Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler JP, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H.

J Exp Bot. 2014 Feb;65(2):755-66. doi: 10.1093/jxb/ert455. Epub 2014 Jan 13. Erratum in: J Exp Bot. 2015 Jun;66(11):3429.

4.

Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees.

Liu B, Rennenberg H, Kreuzwieser J.

PLoS One. 2015 Aug 26;10(8):e0136579. doi: 10.1371/journal.pone.0136579. eCollection 2015.

5.

Interaction of flooding with carbon metabolism of forest trees.

Kreuzwieser J, Papadopoulou E, Rennenberg H.

Plant Biol (Stuttg). 2004 May;6(3):299-306. Review.

PMID:
15143438
6.

Steps towards a mechanistic understanding of respiratory temperature responses.

Kruse J, Rennenberg H, Adams MA.

New Phytol. 2011 Feb;189(3):659-77. doi: 10.1111/j.1469-8137.2010.03576.x. Review.

7.

The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration.

Fasbender L, Maurer D, Kreuzwieser J, Kreuzer I, Schulze WX, Kruse J, Becker D, Alfarraj S, Hedrich R, Werner C, Rennenberg H.

New Phytol. 2017 Apr;214(2):597-606. doi: 10.1111/nph.14404. Epub 2017 Jan 2.

PMID:
28042877
8.

The Dionaea muscipula ammonium channel DmAMT1 provides NH₄⁺ uptake associated with Venus flytrap's prey digestion.

Scherzer S, Krol E, Kreuzer I, Kruse J, Karl F, von Rüden M, Escalante-Perez M, Müller T, Rennenberg H, Al-Rasheid KA, Neher E, Hedrich R.

Curr Biol. 2013 Sep 9;23(17):1649-57. doi: 10.1016/j.cub.2013.07.028. Epub 2013 Aug 15.

9.

A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis.

Kruse J, Alfarraj S, Rennenberg H, Adams M.

Photosynth Res. 2016 Jul;129(1):43-58. doi: 10.1007/s11120-016-0262-x. Epub 2016 May 24.

PMID:
27220614
10.

The Venus flytrap attracts insects by the release of volatile organic compounds.

Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler JP, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H.

J Exp Bot. 2015 Jun;66(11):3429. doi: 10.1093/jxb/erv242. Epub 2015 May 21. No abstract available.

11.

Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia.

Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, Millar AH, Whelan J.

Plant Physiol. 2009 Jan;149(1):461-73. doi: 10.1104/pp.108.125989. Epub 2008 Nov 12.

12.

Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species.

Ferner E, Rennenberg H, Kreuzwieser J.

Tree Physiol. 2012 Feb;32(2):135-45. doi: 10.1093/treephys/tps009. Epub 2012 Feb 23.

PMID:
22367762
13.

Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings.

Liu B, Rennenberg H, Kreuzwieser J.

Planta. 2015 Mar;241(3):579-89. doi: 10.1007/s00425-014-2198-8. Epub 2014 Nov 15.

PMID:
25398429
14.

Molecular and physiological responses of trees to waterlogging stress.

Kreuzwieser J, Rennenberg H.

Plant Cell Environ. 2014 Oct;37(10):2245-59. doi: 10.1111/pce.12310. Epub 2014 Apr 7. Review.

15.

Impact of short-term and long-term elevated CO2 on emission of carbonyls from adult Quercus petraea and Carpinus betulus trees.

Kreuzwieser J, Rennenberg H, Steinbrecher R.

Environ Pollut. 2006 Jul;142(2):246-53. Epub 2005 Nov 28.

PMID:
16314012
16.

Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses.

Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H.

Plant Biol (Stuttg). 2009 Nov;11 Suppl 1:4-23. doi: 10.1111/j.1438-8677.2009.00241.x. Review.

PMID:
19778364
17.

Differences in C metabolism of ash species and provenances as a consequence of root oxygen deprivation by waterlogging.

Jaeger C, Gessler A, Biller S, Rennenberg H, Kreuzwieser J.

J Exp Bot. 2009;60(15):4335-45. doi: 10.1093/jxb/erp268. Epub 2009 Aug 28.

PMID:
19717531
18.

A long antisense RNA in plant chloroplasts.

Georg J, Honsel A, Voss B, Rennenberg H, Hess WR.

New Phytol. 2010 May;186(3):615-22. doi: 10.1111/j.1469-8137.2010.03203.x. Epub 2010 Feb 23.

19.

Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

Du B, Jansen K, Junker LV, Eiblmeier M, Kreuzwieser J, Gessler A, Ensminger I, Rennenberg H.

Tree Physiol. 2014 Oct;34(10):1090-101. doi: 10.1093/treephys/tpu074. Epub 2014 Sep 20.

PMID:
25240727
20.

Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase.

Kruse J, Kopriva S, Hänsch R, Krauss GJ, Mendel RR, Rennenberg H.

Plant Biol (Stuttg). 2007 Sep;9(5):638-46.

PMID:
17853363

Supplemental Content

Support Center