Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 94

1.

Role of the Sln1-phosphorelay pathway in the response to hyperosmotic stress in the yeast Kluyveromyces lactis.

Rodríguez-González M, Kawasaki L, Velázquez-Zavala N, Domínguez-Martín E, Trejo-Medecigo A, Martagón N, Espinoza-Simón E, Vázquez-Ibarra A, Ongay-Larios L, Georgellis D, de Nadal E, Posas F, Coria R.

Mol Microbiol. 2017 Mar 13. doi: 10.1111/mmi.13664. [Epub ahead of print]

PMID:
28295748
2.

An RB insensitive to CDK regulation.

Joaquin M, de Nadal E, Posas F.

Mol Cell Oncol. 2016 Dec 14;4(1):e1268242. doi: 10.1080/23723556.2016.1268242. eCollection 2016 Dec 14.

PMID:
28197540
3.

Untargeted metabolomics unravels functionalities of phosphorylation sites in Saccharomyces cerevisiae.

Raguz Nakic Z, Seisenbacher G, Posas F, Sauer U.

BMC Syst Biol. 2016 Nov 15;10(1):104.

4.

Evolution of protein phosphorylation across 18 fungal species.

Studer RA, Rodriguez-Mias RA, Haas KM, Hsu JI, Viéitez C, Solé C, Swaney DL, Stanford LB, Liachko I, Böttcher R, Dunham MJ, de Nadal E, Posas F, Beltrao P, Villén J.

Science. 2016 Oct 14;354(6309):229-232.

PMID:
27738172
5.

The N-Terminal Phosphorylation of RB by p38 Bypasses Its Inactivation by CDKs and Prevents Proliferation in Cancer Cells.

Gubern A, Joaquin M, Marquès M, Maseres P, Garcia-Garcia J, Amat R, González-Nuñez D, Oliva B, Real FX, de Nadal E, Posas F.

Mol Cell. 2016 Oct 6;64(1):25-36. doi: 10.1016/j.molcel.2016.08.015. Epub 2016 Sep 15.

PMID:
27642049
6.

A Synthetic Multicellular Memory Device.

Urrios A, Macia J, Manzoni R, Conde N, Bonforti A, de Nadal E, Posas F, Solé R.

ACS Synth Biol. 2016 Aug 19;5(8):862-73. doi: 10.1021/acssynbio.5b00252. Epub 2016 Aug 8.

PMID:
27439436
7.

3D-printing of transparent bio-microfluidic devices in PEG-DA.

Urrios A, Parra-Cabrera C, Bhattacharjee N, Gonzalez-Suarez AM, Rigat-Brugarolas LG, Nallapatti U, Samitier J, DeForest CA, Posas F, Garcia-Cordero JL, Folch A.

Lab Chip. 2016 Jun 21;16(12):2287-94. doi: 10.1039/c6lc00153j. Epub 2016 May 24.

PMID:
27217203
8.

Synthetic biology: insights into biological computation.

Manzoni R, Urrios A, Velazquez-Garcia S, de Nadal E, Posas F.

Integr Biol (Camb). 2016 Apr 18;8(4):518-32. doi: 10.1039/c5ib00274e. Epub 2016 Apr 13. Review.

PMID:
27074335
9.

Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia.

Macia J, Manzoni R, Conde N, Urrios A, de Nadal E, Solé R, Posas F.

PLoS Comput Biol. 2016 Feb 1;12(2):e1004685. doi: 10.1371/journal.pcbi.1004685. eCollection 2016 Feb 1.

10.

Predictors of Permanent Pacemaker Insertion Following Transcatheter Aortic Valve Replacement With the CoreValve Revalving System Based on Computed Tomography Analysis: An Asian Multicenter Registry Study.

Kim WJ, Ko YG, Han S, Kim YH, Dy TC, Posas FE, Lee MK, Kim HS, Hong MK, Jang Y, Grube E, Park SJ.

J Invasive Cardiol. 2015 Jul;27(7):334-40.

11.

Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription.

de Nadal E, Posas F.

FEBS J. 2015 Sep;282(17):3275-85. doi: 10.1111/febs.13323. Epub 2015 Jun 10. Review.

12.

H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes.

Nadal-Ribelles M, Mas G, Millán-Zambrano G, Solé C, Ammerer G, Chávez S, Posas F, de Nadal E.

Nucleic Acids Res. 2015 May 26;43(10):4937-49. doi: 10.1093/nar/gkv220. Epub 2015 Mar 26.

13.

Parallel feedback loops control the basal activity of the HOG MAPK signaling cascade.

Sharifian H, Lampert F, Stojanovski K, Regot S, Vaga S, Buser R, Lee SS, Koeppl H, Posas F, Pelet S, Peter M.

Integr Biol (Camb). 2015 Apr;7(4):412-22. doi: 10.1039/c4ib00299g.

PMID:
25734609
14.

Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress.

González-Novo A, Jiménez J, Clotet J, Nadal-Ribelles M, Cavero S, de Nadal E, Posas F.

Mol Cell Biol. 2015 May;35(9):1606-18. doi: 10.1128/MCB.01279-14. Epub 2015 Mar 2.

15.

A novel role for lncRNAs in cell cycle control during stress adaptation.

Solé C, Nadal-Ribelles M, de Nadal E, Posas F.

Curr Genet. 2015 Aug;61(3):299-308. doi: 10.1007/s00294-014-0453-y. Epub 2014 Sep 28. Review.

16.

Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells.

Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Muñoz E, Torres-Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menéndez-Arias L, Clotet B, Keppler OT, Martí R, Posas F, Ballana E, Esté JA.

J Immunol. 2014 Aug 15;193(4):1988-97. doi: 10.4049/jimmunol.1400873. Epub 2014 Jul 11.

17.

Control of Cdc28 CDK1 by a stress-induced lncRNA.

Nadal-Ribelles M, Solé C, Xu Z, Steinmetz LM, de Nadal E, Posas F.

Mol Cell. 2014 Feb 20;53(4):549-61. doi: 10.1016/j.molcel.2014.01.006. Epub 2014 Feb 6.

18.

Dealing with transcriptional outbursts during S phase to protect genomic integrity.

Duch A, de Nadal E, Posas F.

J Mol Biol. 2013 Nov 29;425(23):4745-55. doi: 10.1016/j.jmb.2013.08.019. Epub 2013 Sep 7. Review.

19.

Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.

Geijer C, Medrala-Klein D, Petelenz-Kurdziel E, Ericsson A, Smedh M, Andersson M, Goksör M, Nadal-Ribelles M, Posas F, Krantz M, Nordlander B, Hohmann S.

FEBS J. 2013 Aug;280(16):3854-67. doi: 10.1111/febs.12382. Epub 2013 Jul 5.

20.

The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress.

Regot S, de Nadal E, Rodríguez-Navarro S, González-Novo A, Pérez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F.

J Biol Chem. 2013 Jun 14;288(24):17384-98. doi: 10.1074/jbc.M112.444042. Epub 2013 May 3. Erratum in: J Biol Chem. 2015 Jan 23;290(4):2301.

Supplemental Content

Support Center