Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 3461

1.

Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223.

Roquigny R, Novinscak A, Arseneault T, Joly DL, Filion M.

BMC Genomics. 2018 Jun 19;19(1):474. doi: 10.1186/s12864-018-4852-1.

PMID:
29914352
2.

Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato.

Aguilera-Galvez C, Champouret N, Rietman H, Lin X, Wouters D, Chu Z, Jones JDG, Vossen JH, Visser RGF, Wolters PJ, Vleeshouwers VGAA.

Stud Mycol. 2018 Mar;89:105-115. doi: 10.1016/j.simyco.2018.01.002. Epub 2018 Feb 7.

3.

RXLR effector diversity in Phytophthora infestans isolates determines recognition by potato resistance proteins; the case study AVR1 and R1.

Du Y, Weide R, Zhao Z, Msimuko P, Govers F, Bouwmeester K.

Stud Mycol. 2018 Mar;89:85-93. doi: 10.1016/j.simyco.2018.01.003. Epub 2018 Feb 7.

4.

Transcriptomic and proteomic analysis reveals wall-associated and glucan-degrading proteins with potential roles in Phytophthora infestans sexual spore development.

Niu X, Ah-Fong AMV, Lopez LA, Judelson HS.

PLoS One. 2018 Jun 13;13(6):e0198186. doi: 10.1371/journal.pone.0198186. eCollection 2018.

5.

RNA and mRNA Nitration as a Novel Metabolic Link in Potato Immune Response to Phytophthora infestans.

Izbiańska K, Floryszak-Wieczorek J, Gajewska J, Meller B, Kuźnicki D, Arasimowicz-Jelonek M.

Front Plant Sci. 2018 May 29;9:672. doi: 10.3389/fpls.2018.00672. eCollection 2018.

6.

Aquatic Pseudomonads Inhibit Oomycete Plant Pathogens of Glycine max.

Wagner A, Norris S, Chatterjee P, Morris PF, Wildschutte H.

Front Microbiol. 2018 May 29;9:1007. doi: 10.3389/fmicb.2018.01007. eCollection 2018.

7.

Gene Profiling in Late Blight Resistance in Potato Genotype SD20.

Yang X, Guo X, Yang Y, Ye P, Xiong X, Liu J, Dong D, Li G.

Int J Mol Sci. 2018 Jun 11;19(6). pii: E1728. doi: 10.3390/ijms19061728.

8.

Global gene expression profiling for fruit organs and pathogen infections in the pepper, Capsicum annuum L.

Kim MS, Kim S, Jeon J, Kim KT, Lee HA, Lee HY, Park J, Seo E, Kim SB, Yeom SI, Lee YH, Choi D.

Sci Data. 2018 Jun 5;5:180103. doi: 10.1038/sdata.2018.103.

9.

Challenges and Strategies for Breeding Resistance in Capsicum annuum to the Multifarious Pathogen, Phytophthora capsici.

Barchenger DW, Lamour KH, Bosland PW.

Front Plant Sci. 2018 May 15;9:628. doi: 10.3389/fpls.2018.00628. eCollection 2018. Review.

10.

A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity.

Fan G, Yang Y, Li T, Lu W, Du Y, Qiang X, Wen Q, Shan W.

Mol Plant. 2018 Jun 1. pii: S1674-2052(18)30186-2. doi: 10.1016/j.molp.2018.05.009. [Epub ahead of print]

PMID:
29864524
11.

Antifungal Activities of Volatile Secondary Metabolites of Four Diaporthe Strains Isolated from Catharanthus roseus.

Yan DH, Song X, Li H, Luo T, Dou G, Strobel G.

J Fungi (Basel). 2018 May 30;4(2). pii: E65. doi: 10.3390/jof4020065.

12.

Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression.

Rasoolizadeh A, Labbé C, Sonah H, Deshmukh RK, Belzile F, Menzies JG, Bélanger RR.

BMC Plant Biol. 2018 May 30;18(1):97. doi: 10.1186/s12870-018-1312-7.

13.

In Vitro Antifungal Activity of New and Known Geranylated Phenols against Phytophthora cinnamomi Rands.

Chavez MI, Soto M, Cimino FA, Olea AF, Espinoza L, Díaz K, Taborga L.

Int J Mol Sci. 2018 May 29;19(6). pii: E1601. doi: 10.3390/ijms19061601.

14.

Pathogen-induced AdDjSKI of the wild peanut, Arachis diogoi, potentiates tolerance of multiple stresses in E. coli and tobacco.

Rampuria S, Bag P, Rogan CJ, Sharma A, Gassmann W, Kirti PB.

Plant Sci. 2018 Jul;272:62-74. doi: 10.1016/j.plantsci.2018.03.033. Epub 2018 Apr 3.

PMID:
29807607
15.

Discovery of Methyl (5 Z)-[2-(2,4,5-Trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetates as Antifungal Agents against Potato Diseases.

Obydennov KL, Khamidullina LA, Galushchinskiy AN, Shatunova SA, Kosterina MF, Kalinina TA, Fan Z, Glukhareva TV, Morzherin YY.

J Agric Food Chem. 2018 Jun 7. doi: 10.1021/acs.jafc.8b02151. [Epub ahead of print]

PMID:
29807429
16.

Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (Solanum tuberosum).

Enciso-Rodriguez F, Douches D, Lopez-Cruz M, Coombs J, de Los Campos G.

G3 (Bethesda). 2018 May 24. pii: g3.200273.2018. doi: 10.1534/g3.118.200273. [Epub ahead of print]

17.

Bioassay-guided isolation of antifungal compounds from Disporopsis aspera Engl. against Pseudoperonospora cubensis and Phytophthora infestans.

Zhu F, Yuan C, Gang F, Yang C, Wu W, Zhang J.

Chem Biodivers. 2018 May 17. doi: 10.1002/cbdv.201800090. [Epub ahead of print]

PMID:
29772116
18.

Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits.

Mandal MK, Suren H, Ward B, Boroujerdi A, Kousik C.

J Pineal Res. 2018 May 15:e12505. doi: 10.1111/jpi.12505. [Epub ahead of print]

PMID:
29766569
19.

Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana.

Wu L, Huang Z, Li X, Ma L, Gu Q, Wu H, Liu J, Borriss R, Wu Z, Gao X.

Front Microbiol. 2018 Apr 27;9:847. doi: 10.3389/fmicb.2018.00847. eCollection 2018.

20.

Abscisic Acid as a Dominant Signal in Tomato During Salt Stress Predisposition to Phytophthora Root and Crown Rot.

Pye MF, Dye SM, Resende RS, MacDonald JD, Bostock RM.

Front Plant Sci. 2018 Apr 23;9:525. doi: 10.3389/fpls.2018.00525. eCollection 2018.

Supplemental Content

Loading ...
Support Center