Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 84

1.

Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase.

Bird JG, Basu U, Kuster D, Ramachandran A, Grudzien-Nogalska E, Towheed A, Wallace DC, Kiledjian M, Temiakov D, Patel SS, Ebright RH, Nickels BE.

Elife. 2018 Dec 10;7. pii: e42179. doi: 10.7554/eLife.42179. [Epub ahead of print]

2.

RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization.

Devarkar SC, Schweibenz B, Wang C, Marcotrigiano J, Patel SS.

Mol Cell. 2018 Oct 18;72(2):355-368.e4. doi: 10.1016/j.molcel.2018.08.021. Epub 2018 Sep 27.

PMID:
30270105
3.

Helicase promotes replication re-initiation from an RNA transcript.

Sun B, Singh A, Sultana S, Inman JT, Patel SS, Wang MD.

Nat Commun. 2018 Jun 13;9(1):2306. doi: 10.1038/s41467-018-04702-x.

4.

Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution.

Koh HR, Roy R, Sorokina M, Tang GQ, Nandakumar D, Patel SS, Ha T.

Mol Cell. 2018 May 17;70(4):695-706.e5. doi: 10.1016/j.molcel.2018.04.018.

PMID:
29775583
5.

Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases.

Sultana S, Solotchi M, Ramachandran A, Patel SS.

J Biol Chem. 2017 Nov 3;292(44):18145-18160. doi: 10.1074/jbc.M117.797480. Epub 2017 Sep 7.

6.

Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation.

Ramachandran A, Basu U, Sultana S, Nandakumar D, Patel SS.

Nucleic Acids Res. 2017 Jan 25;45(2):861-874. doi: 10.1093/nar/gkw1157. Epub 2016 Nov 29.

7.

Overcoming a nucleosomal barrier to replication.

Chang HW, Pandey M, Kulaeva OI, Patel SS, Studitsky VM.

Sci Adv. 2016 Nov 11;2(11):e1601865. eCollection 2016 Nov.

8.

DNA looping mediates nucleosome transfer.

Brennan LD, Forties RA, Patel SS, Wang MD.

Nat Commun. 2016 Nov 3;7:13337. doi: 10.1038/ncomms13337.

9.

The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

Ramachandran A, Nandakumar D, Deshpande AP, Lucas TP, R-Bhojappa R, Tang GQ, Raney K, Yin YW, Patel SS.

J Biol Chem. 2016 Aug 5;291(32):16828-39. doi: 10.1074/jbc.M116.740282. Epub 2016 Jun 16.

10.

Methods to study the coupling between replicative helicase and leading-strand DNA polymerase at the replication fork.

Nandakumar D, Patel SS.

Methods. 2016 Oct 1;108:65-78. doi: 10.1016/j.ymeth.2016.05.003. Epub 2016 May 9. Review.

11.

Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE.

Sen D, Patel G, Patel SS.

Nucleic Acids Res. 2016 May 19;44(9):4200-10. doi: 10.1093/nar/gkw098. Epub 2016 Feb 16.

12.

Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I.

Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J.

Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):596-601. doi: 10.1073/pnas.1515152113. Epub 2016 Jan 5.

13.

T7 replisome directly overcomes DNA damage.

Sun B, Pandey M, Inman JT, Yang Y, Kashlev M, Patel SS, Wang MD.

Nat Commun. 2015 Dec 17;6:10260. doi: 10.1038/ncomms10260.

14.

The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection.

Ramanathan A, Devarkar SC, Jiang F, Miller MT, Khan AG, Marcotrigiano J, Patel SS.

Nucleic Acids Res. 2016 Jan 29;44(2):896-909. doi: 10.1093/nar/gkv1299. Epub 2015 Nov 26.

15.

Two mechanisms coordinate replication termination by the Escherichia coli Tus-Ter complex.

Pandey M, Elshenawy MM, Jergic S, Takahashi M, Dixon NE, Hamdan SM, Patel SS.

Nucleic Acids Res. 2015 Jul 13;43(12):5924-35. doi: 10.1093/nar/gkv527. Epub 2015 May 24.

16.

Cooperative base pair melting by helicase and polymerase positioned one nucleotide from each other.

Nandakumar D, Pandey M, Patel SS.

Elife. 2015 May 13;4. doi: 10.7554/eLife.06562.

17.

Finding the right match fast.

Nandakumar D, Patel SS.

Cell. 2015 Feb 26;160(5):809-811. doi: 10.1016/j.cell.2015.02.007.

18.

Interactions of the yeast mitochondrial RNA polymerase with the +1 and +2 promoter bases dictate transcription initiation efficiency.

Deshpande AP, Patel SS.

Nucleic Acids Res. 2014 Oct;42(18):11721-32. doi: 10.1093/nar/gku868. Epub 2014 Sep 23.

19.

Fluorescent methods to study transcription initiation and transition into elongation.

Deshpande AP, Sultana S, Patel SS.

Exp Suppl. 2014;105:105-30. doi: 10.1007/978-3-0348-0856-9_6. Review.

20.

Relaxed rotational and scrunching changes in P266L mutant of T7 RNA polymerase reduce short abortive RNAs while delaying transition into elongation.

Tang GQ, Nandakumar D, Bandwar RP, Lee KS, Roy R, Ha T, Patel SS.

PLoS One. 2014 Mar 20;9(3):e91859. doi: 10.1371/journal.pone.0091859. eCollection 2014.

Supplemental Content

Loading ...
Support Center