Format

Send to

Choose Destination

See 1 citation:

Eur J Clin Invest. 2006 Apr;36(4):224-30.

Effects of atorvastatin on high-density lipoprotein apolipoprotein A-I metabolism in dogs.

Author information

1
Centre de Recherche en Nutrition Humaine, INSERM U539, CHU Nantes, France.

Erratum in

  • Eur J Clin Invest. 2006 Jul;36(7):518.

Abstract

BACKGROUND:

The mechanisms involved in the decline of high-density lipoprotein (HDL) levels at a higher dose of atorvastatin have not yet been elucidated. We investigated the effects of atorvastatin on HDL-apolipoprotein (apo) A-I metabolism in dogs, a species lacking cholesteryl ester transfer protein activity.

MATERIALS AND METHODS:

Seven ovariectomized normolipidaemic female Beagle dogs underwent a primed constant infusion of [5,5,5-(2)H(3)] leucine to determine HDL-apo A-I kinetics before and after atorvastatin treatment (5 mg kg(-1) d(-1) for 6 weeks). Plasma lipoprotein profiles, activity of HDL-modifying enzymes involved in reverse cholesterol transport and hepatic scavenger receptor class B type I (SR-BI) expression were also studied.

RESULTS:

Atorvastatin treatment decreased HDL-cholesterol levels (3.56 +/- 0.24 vs. 2.64 +/- 0.15 mmol L(-1), P < 0.05). HDL-triglycerides were not affected. HDL-phospholipids levels were decreased (4.28 +/- 0.13 vs. 3.29 +/- 0.13 mmol L(-1), P < 0.05), as well as phospholipids transfer protein (PLTP) activity (0.83 +/- 0.05 vs. 0.60 +/- 0.05 pmol microL(-1) min(-1), P < 0.05). Activity of lecithin: cholesterol acyl transferase (LCAT), hepatic lipase (HL) and SR-BI expression did not change. HDL-apo A-I absolute production rate (APR) was higher after treatment (twofold, P < 0.05) as well as fractional catabolic rate (FCR) (threefold, P < 0.05). This resulted in lower HDL-apo A-I levels (2.36 +/- 0.03 vs. 1.55 +/- 0.04 g l(-1), P < 0.05). Plasma lipoprotein profiles showed a decrease in large HDL(1) levels, with lower apo A-I and higher apo E levels in this subfraction.

CONCLUSIONS:

Although a high dose of atorvastatin up-regulated HDL-apo A-I production, this drug also increased HDL-apo A-I FCR in dogs. This effect could be explained by a higher uptake of apo E-enriched HDL(1) by hepatic lipoprotein receptors.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center