Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013;8(2):e55246. doi: 10.1371/journal.pone.0055246. Epub 2013 Feb 12.

Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool.

Collaborators (255)

Weiner M, Aisen P, Weiner M, Aisen P, Petersen R, Jack CR Jr, Jagust W, Trojanowki JQ, Toga AW, Beckett L, Green RC, Saykin AJ, Morris J, Liu E, Green RC, Montine T, Petersen R, Aisen P, Gamst A, Thomas RG, Donohue M, Walter S, Gessert D, Sather T, Beckett L, Harvey D, Gamst A, Donohue M, Kornak J, Jack CR Jr, Dale A, Bernstein M, Felmlee J, Fox N, Thompson P, Schuff N, Alexander G, DeCarli C, Jagust W, Bandy D, Koeppe RA, Foster N, Reiman EM, Chen K, Mathis C, Morris J, Cairns NJ, Taylor-Reinwald L, Trojanowki JQ, Shaw L, Lee VM, Korecka M, Toga AW, Crawford K, Neu S, Saykin AJ, Foroud TM, Potkin S, Shen L, Kachaturian Z, Frank R, Snyder PJ, Molchan S, Kaye J, Quinn J, Lind B, Dolen S, Schneider LS, Pawluczyk S, Spann BM, Brewer J, Vanderswag H, Heidebrink JL, Lord JL, Petersen R, Johnson K, Doody RS, Villanueva-Meyer J, Chowdhury M, Stern Y, Honig LS, Bell KL, Morris JC, Ances B, Carroll M, Leon S, Mintun MA, Schneider S, Marson D, Griffith R, Clark D, Grossman H, Mitsis E, Romirowsky A, deToledo-Morrell L, Shah RC, Duara R, Varon D, Roberts P, Albert M, Onyike C, Kielb S, Rusinek H, de Leon MJ, Glodzik L, De Santi S, Doraiswamy P, Petrella JR, Coleman R, Arnold SE, Karlawish JH, Wolk D, Smith CD, Jicha G, Hardy P, Lopez OL, Oakley M, Simpson DM, Porsteinsson AP, Goldstein BS, Martin K, Makino KM, Ismail M, Brand C, Mulnard RA, Thai G, Mc-Adams-Ortiz C, Womack K, Mathews D, Quiceno M, Diaz-Arrastia R, King R, Weiner M, Martin-Cook K, DeVous M, Levey AI, Lah JJ, Cellar JS, Burns JM, Anderson HS, Swerdlow RH, Apostolova L, Lu PH, Bartzokis G, Silverman DH, Graff-Radford NR, Parfitt F, Johnson H, Farlow MR, Hake AM, Matthews BR, Herring S, van Dyck CH, Carson RE, MacAvoy MG, Chertkow H, Bergman H, Hosein C, Black S, Stefanovic B, Caldwell C, Hsiung GY, Feldman H, Mudge B, Assaly M, Kertesz A, Rogers J, Trost D, Bernick C, Munic D, Kerwin D, Mesulam MM, Lipowski K, Wu CK, Johnson N, Sadowsky C, Martinez W, Villena T, Turner RS, Johnson K, Reynolds B, Sperling RA, Johnson KA, Marshall G, Frey M, Yesavage J, Taylor JL, Lane B, Rosen A, Tinklenberg J, Sabbagh M, Belden C, Jacobson S, Kowall N, Killiany R, Budson AE, Norbash A, Johnson PL, Obisesan TO, Wolday S, Bwayo SK, Lerner A, Hudson L, Ogrocki P, Fletcher E, Carmichael O, Olichney J, DeCarli C, Kittur S, Borrie M, Lee TY, Bartha R, Johnson S, Asthana S, Carlsson CM, Potkin SG, Preda A, Nguyen D, Tariot P, Fleisher A, Reeder S, Bates V, Capote H, Rainka M, Scharre DW, Kataki M, Zimmerman EA, Celmins D, Brown AD, Pearlson GD, Blank K, Anderson K, Saykin AJ, Santulli RB, Schwartz ES, Sink KM, Williamson JD, Garg P, Watkins F, Ott BR, Querfurth H, Tremont G, Salloway S, Malloy P, Correia S, Rosen HJ, Miller BL, Mintzer J, Flynn Longmire C, Spicer K, Finger E, Rachinsky I, Rogers J, Kertesz A, Drost D.

Author information

1
Department of Neurology, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.

Abstract

PURPOSE:

To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal type and visual assessment of medial temporal lobe atrophy (MTA) on MRI and CSF biomarkers.

METHODS:

Altogether 391 MCI cases (158 AD converters) were selected from the ADNI cohort. All the cases had baseline cognitive tests, MRI and/or CSF levels of Aβ1-42 and Tau. Using baseline data, the status of MCI patients (AD or MCI) three years later was predicted using current diagnostic research guidelines and the PredictAD software tool designed for supporting clinical diagnostics. The data used were 1) clinical criteria for episodic memory loss of the hippocampal type, 2) visual MTA, 3) positive CSF markers, 4) their combinations, and 5) when the PredictAD tool was applied, automatically computed MRI measures were used instead of the visual MTA results. The accuracies of diagnosis were evaluated with the diagnosis made 3 years later.

RESULTS:

The PredictAD tool achieved the overall accuracy of 72% (sensitivity 73%, specificity 71%) in predicting the AD diagnosis. The corresponding number for a clinician's prediction with the assistance of the PredictAD tool was 71% (sensitivity 75%, specificity 68%). Diagnosis with the PredictAD tool was significantly better than diagnosis by biomarkers alone or the combinations of clinical diagnosis of hippocampal pattern for the memory loss and biomarkers (p≤0.037).

CONCLUSION:

With the assistance of PredictAD tool, the clinician can predict AD conversion more accurately than the current diagnostic criteria.

PMID:
23424625
PMCID:
PMC3570420
DOI:
10.1371/journal.pone.0055246
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center