Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2013 Jan 15;65:167-75. doi: 10.1016/j.neuroimage.2012.09.065. Epub 2012 Oct 4.

Random forest-based similarity measures for multi-modal classification of Alzheimer's disease.

Collaborators (254)

Weiner M, Aisen P, Weiner M, Aisen P, Petersen R, Jack CR Jr, Jagust W, Trojanowki JQ, Toga AW, Beckett L, Green RC, Saykin AJ, Morris J, Liu E, Green RC, Montine T, Petersen R, Aisen P, Gamst A, Thomas RG, Donohue M, Walter S, Gessert D, Sather T, Beckett L, Harvey D, Gamst A, Donohue M, Kornak J, Jack CR Jr, Dale A, Bernstein M, Felmlee J, Fox N, Thompson P, Schuff N, Alexander G, DeCarli C, Jagust W, Bandy D, Koeppe RA, Foster N, Reiman EM, Chen K, Mathis C, Morris J, Cairns NJ, Taylor-Reinwald L, Trojanowki JQ, Shaw L, Lee VM, Korecka M, Toga AW, Crawford K, Neu S, Saykin AJ, Foroud TM, Potkin S, Shen L, Kachaturian Z, Frank R, Snyder PJ, Molchan S, Kaye J, Quinn J, Lind B, Dolen S, Schneider LS, Pawluczyk S, Spann BM, Brewer J, Vanderswag H, Heidebrink JL, Lord JL, Petersen R, Johnson K, Doody RS, Villanueva-Meyer J, Chowdhury M, Stern Y, Honig LS, Bell KL, Morris JC, Ances B, Carroll M, Leon S, Mintun MA, Schneider S, Marson D, Griffith R, Clark D, Grossman H, Mitsis E, Romirowsky A, deToledo-Morrell L, Shah RC, Duara R, Varon D, Roberts P, Albert M, Onyike C, Kielb S, Rusinek H, de Leon MJ, Glodzik L, De Santi S, Doraiswamy P, Petrella JR, Coleman R, Arnold SE, Karlawish JH, Wolk D, Smith CD, Jicha G, Hardy P, Lopez OL, Oakley M, Simpson DM, Porsteinsson AP, Goldstein BS, Martin K, Makino KM, Ismail M, Brand C, Mulnard RA, Thai G, Mc-Adams-Ortiz C, Womack K, Mathews D, Quiceno M, Diaz-Arrastia R, King R, Weiner M, Martin-Cook K, DeVous M, Levey AI, Lah JJ, Cellar JS, Burns JM, Anderson HS, Swerdlow RH, Apostolova L, Lu PH, Bartzokis G, Silverman DH, Graff-Radford NR, Parfitt F, Johnson H, Farlow MR, Hake AM, Matthews BR, Herring S, van Dyck CH, Carson RE, MacAvoy MG, Chertkow H, Bergman H, Hosein C, Black S, Stefanovic B, Caldwell C, Hsiung GY, Feldman H, Mudge B, Assaly M, Kertesz A, Rogers J, Trost D, Bernick C, Munic D, Kerwin D, Mesulam MM, Lipowski K, Wu CK, Johnson N, Sadowsky C, Martinez W, Villena T, Turner RS, Johnson K, Reynolds B, Sperling RA, Johnson KA, Marshall G, Frey M, Yesavage J, Taylor JL, Lane B, Rosen A, Tinklenberg J, Sabbagh M, Belden C, Jacobson S, Kowall N, Killiany R, Budson AE, Norbash A, Johnson PL, Obisesan TO, Wolday S, Bwayo SK, Lerner A, Hudson L, Ogrocki P, Fletcher E, Carmichael O, Olichney J, DeCarli C, Kittur S, Borrie M, Lee TY, Bartha R, Johnson S, Asthana S, Carlsson CM, Potkin SG, Preda A, Nguyen D, Tariot P, Fleisher A, Reeder S, Bates V, Capote H, Rainka M, Scharre DW, Kataki M, Zimmerman EA, Celmins D, Brown AD, Pearlson GD, Blank K, Anderson K, Saykin AJ, Santulli RB, Schwartz ES, Sink KM, Williamson JD, Garg P, Watkins F, Ott BR, Querfurth H, Tremont G, Salloway S, Malloy P, Correia S, Rosen HJ, Miller BL, Mintzer J, Spicer K, Finger E, Rachinsky I, Rogers J, Kertesz A, Drost D.

Author information

1
Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK. krg03@imperial.ac.uk

Abstract

Neurodegenerative disorders, such as Alzheimer's disease, are associated with changes in multiple neuroimaging and biological measures. These may provide complementary information for diagnosis and prognosis. We present a multi-modality classification framework in which manifolds are constructed based on pairwise similarity measures derived from random forest classifiers. Similarities from multiple modalities are combined to generate an embedding that simultaneously encodes information about all the available features. Multi-modality classification is then performed using coordinates from this joint embedding. We evaluate the proposed framework by application to neuroimaging and biological data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Features include regional MRI volumes, voxel-based FDG-PET signal intensities, CSF biomarker measures, and categorical genetic information. Classification based on the joint embedding constructed using information from all four modalities out-performs the classification based on any individual modality for comparisons between Alzheimer's disease patients and healthy controls, as well as between mild cognitive impairment patients and healthy controls. Based on the joint embedding, we achieve classification accuracies of 89% between Alzheimer's disease patients and healthy controls, and 75% between mild cognitive impairment patients and healthy controls. These results are comparable with those reported in other recent studies using multi-kernel learning. Random forests provide consistent pairwise similarity measures for multiple modalities, thus facilitating the combination of different types of feature data. We demonstrate this by application to data in which the number of features differs by several orders of magnitude between modalities. Random forest classifiers extend naturally to multi-class problems, and the framework described here could be applied to distinguish between multiple patient groups in the future.

PMID:
23041336
PMCID:
PMC3516432
DOI:
10.1016/j.neuroimage.2012.09.065
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center