Format

Send to

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2012 Jun 15;28(12):i127-36. doi: 10.1093/bioinformatics/bts228.

Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning.

Collaborators (250)

Weiner M, Aisen P, Petersen R, Jack CR Jr, Jagust W, Trojanowki JQ, Beckett L, Green RC, Saykin AJ, Morris J, Liu E, Montine T, Petersen R, Aisen P, Gamst A, Thomas RG, Donohue M, Walter S, Gessert D, Sather T, Beckett L, Harvey D, Gamst A, Donohue M, Kornak J, Jack CR Jr, Dale A, Bernstein M, Felmlee J, Fox N, Thompson P, Schuff N, Alexander G, DeCarli C, Jagust W, Bandy D, Koeppe RA, Foster N, Reiman EM, Chen K, Mathis C, Morris J, Cairns NJ, Taylor-Reinwald L, Trojanowki JQ, Shaw L, Lee VM, Korecka M, Toga AW, Crawford K, Neu S, Saykin AJ, Foroud TM, Potkin S, Shen L, Kachaturian Z, Frank R, Snyder PJ, Molchan S, Kaye J, Quinn J, Lind B, Dolen S, Schneider LS, Pawluczyk S, Spann BM, Brewer J, Vanderswag H, Heidebrink JL, Lord JL, Petersen R, Johnson K, Doody RS, Villanueva-Meyer J, Chowdhury M, Stern Y, Honig LS, Bell KL, Morris JC, Ances B, Carroll M, Leon S, Mintun MA, Schneider S, Marson D, Griffith R, Clark D, Grossman H, Mitsis E, Romirowsky A, deToledo-Morrell L, Shah RC, Duara R, Varon D, Roberts P, Albert M, Onyike C, Kielb S, Rusinek H, de Leon MJ, Glodzik L, De Santi S, Doraiswamy P, Petrella JR, Coleman R, Arnold SE, Karlawish JH, Wolk D, Smith CD, Jicha G, Hardy P, Lopez OL, Oakley M, Simpson DM, Porsteinsson AP, Goldstein BS, Martin K, Makino KM, Ismail M, Brand C, Mulnard RA, Thai G, Mc-Adams-Ortiz C, Womack K, Mathews D, Quiceno M, Diaz-Arrastia R, King R, Weiner M, Martin-Cook K, DeVous M, Levey AI, Lah JJ, Cellar JS, Burns JM, Anderson HS, Swerdlow RH, Apostolova L, Lu PH, Bartzokis G, Silverman DH, Graff-Radford NR, Parfitt F, Johnson H, Farlow MR, Hake AM, Matthews BR, van Dyck CH, Carson RE, MacAvoy MG, Chertkow H, Bergman H, Hosein C, Black S, Stefanovic B, Caldwell C, Hsiung GY, Feldman H, Mudge B, Assaly M, Kertesz A, Rogers J, Trost D, Bernick C, Munic D, Kerwin D, Mesulam MM, Lipowski K, Wu CK, Johnson N, Sadowsky C, Martinez W, Villena T, Turner RS, Johnson K, Reynolds B, Sperling RA, Johnson KA, Marshall G, Frey M, Yesavage J, Taylor JL, Lane B, Rosen A, Tinklenberg J, Sabbagh M, Belden C, Jacobson S, Kowall N, Killiany R, Budson AE, Norbash A, Johnson PL, Obisesan TO, Wolday S, Bwayo SK, Lerner A, Hudson L, Ogrocki P, Fletcher E, Carmichael O, Olichney J, DeCarli C, Kittur S, Borrie M, Lee TY, Bartha R, Johnson S, Asthana S, Carlsson CM, Potkin SG, Preda A, Nguyen D, Tariot P, Fleisher A, Reeder S, Bates V, Capote H, Rainka M, Scharre DW, Kataki M, Zimmerman EA, Celmins D, Brown AD, Pearlson GD, Blank K, Anderson K, Saykin AJ, Santulli RB, Schwartz ES, Sink KM, Williamson JD, Garg P, Watkins F, Ott BR, Querfurth H, Tremont G, Salloway S, Malloy P, Correia S, Rosen HJ, Miller BL, Mintzer J, Longmire CF, Spicer K, Finger E, Rachinsky I, Rogers J, Kertesz A, Drost D.

Author information

1
Department of Computer Science and Engineering, University of Texas at Arlington, TX 76019, USA.

Abstract

MOTIVATION:

Recent advances in brain imaging and high-throughput genotyping techniques enable new approaches to study the influence of genetic and anatomical variations on brain functions and disorders. Traditional association studies typically perform independent and pairwise analysis among neuroimaging measures, cognitive scores and disease status, and ignore the important underlying interacting relationships between these units.

RESULTS:

To overcome this limitation, in this article, we propose a new sparse multimodal multitask learning method to reveal complex relationships from gene to brain to symptom. Our main contributions are three-fold: (i) introducing combined structured sparsity regularizations into multimodal multitask learning to integrate multidimensional heterogeneous imaging genetics data and identify multimodal biomarkers; (ii) utilizing a joint classification and regression learning model to identify disease-sensitive and cognition-relevant biomarkers; (iii) deriving a new efficient optimization algorithm to solve our non-smooth objective function and providing rigorous theoretical analysis on the global optimum convergency. Using the imaging genetics data from the Alzheimer's Disease Neuroimaging Initiative database, the effectiveness of the proposed method is demonstrated by clearly improved performance on predicting both cognitive scores and disease status. The identified multimodal biomarkers could predict not only disease status but also cognitive function to help elucidate the biological pathway from gene to brain structure and function, and to cognition and disease.

AVAILABILITY:

Software is publicly available at: http://ranger.uta.edu/%7eheng/multimodal/.

PMID:
22689752
PMCID:
PMC3371860
DOI:
10.1093/bioinformatics/bts228
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center