Send to

Choose Destination
See comment in PubMed Commons below

Regression-Based Label Fusion for Multi-Atlas Segmentation.


Automatic segmentation using multi-atlas label fusion has been widely applied in medical image analysis. To simplify the label fusion problem, most methods implicitly make a strong assumption that the segmentation errors produced by different atlases are uncorrelated. We show that violating this assumption significantly reduces the efficiency of multi-atlas segmentation. To address this problem, we propose a regression-based approach for label fusion. Our experiments on segmenting the hippocampus in magnetic resonance images (MRI) show significant improvement over previous label fusion techniques.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center