Format

Send to

Choose Destination
Arthritis Res Ther. 2010;12(5):R201. doi: 10.1186/ar3173. Epub 2010 Oct 26.

Perturbation of adhesion molecule-mediated chondrocyte-matrix interactions by 4-hydroxynonenal binding: implication in osteoarthritis pathogenesis.

Author information

1
Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal, Department of Surgery, University of Montreal, 5400 Gouin Blvd, West, Montreal, QC H4J 1C5, Canada. rana.el.bikai@umontreal.ca

Abstract

INTRODUCTION:

Objectives were to investigate whether interactions between human osteoarthritic chondrocytes and 4-hydroxynonenal (HNE)-modified type II collagen (Col II) affect cell phenotype and functions and to determine the protective role of carnosine (CAR) treatment in preventing these effects.

METHODS:

Human Col II was treated with HNE at different molar ratios (MR) (1:20 to 1:200; Col II:HNE). Articular chondrocytes were seeded in HNE/Col II adduct-coated plates and incubated for 48 hours. Cell morphology was studied by phase-contrast and confocal microscopy. Adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and α1β1 integrin at protein and mRNA levels were quantified by Western blotting, flow cytometry and real-time reverse transcription-polymerase chain reaction. Cell death, caspases activity, prostaglandin E2 (PGE2), metalloproteinase-13 (MMP-13), mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) were assessed by commercial kits. Col II, cyclooxygenase-2 (COX-2), MAPK, NF-κB-p65 levels were analyzed by Western blotting. The formation of α1β1 integrin-focal adhesion kinase (FAK) complex was revealed by immunoprecipitation.

RESULTS:

Col II modification by HNE at MR approximately 1:20, strongly induced ICAM-1, α1β1 integrin and MMP-13 expression as well as extracellular signal-regulated kinases 1 and 2 (ERK1/2) and NF-κB-p65 phosphorylation without impacting cell adhesion and viability or Col II expression. However, Col II modification with HNE at MR approximately 1:200, altered chondrocyte adhesion by evoking cell death and caspase-3 activity. It inhibited α1β1 integrin and Col II expression as well as ERK1/2 and NF-κB-p65 phosphorylation, but, in contrast, markedly elicited PGE2 release, COX-2 expression and p38 MAPK phosphorylation. Immunoprecipitation assay revealed the involvement of FAK in cell-matrix interactions through the formation of α1β1 integrin-FAK complex. Moreover, the modification of Col II by HNE at a 1:20 or approximately 1:200 MR affects parameters of the cell shape. All these effects were prevented by CAR, an HNE-trapping drug.

CONCLUSIONS:

Our novel findings indicate that HNE-binding to Col II results in multiple abnormalities of chondrocyte phenotype and function, suggesting its contribution in osteoarthritis development. CAR was shown to be an efficient HNE-snaring agent capable of counteracting these outcomes.

PMID:
20977750
PMCID:
PMC2991038
DOI:
10.1186/ar3173
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center