Send to

Choose Destination
See comment in PubMed Commons below
Med Phys. 2009 Jun;36(6):2193-205.

Measurement of MRI scanner performance with the ADNI phantom.

Author information

Mayo Clinic and Foundation, Rochester, Minnesota 55902, USA.


The objectives of this study are as follows: to describe practical implementation challenges of multisite, multivendor quantitative studies; to describe the MRI phantom and analysis software used in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, illustrate the utility of the system for measuring scanner performance, the ability to assess gradient field nonlinearity corrections: and to recover human brain images without geometric scaling errors in multisite studies. ADNI is a large multicenter study with each center having its own copy of the phantom. The design of the phantom and analysis software are presented as results from predistribution systematics studies and results from field experience with the phantom at 58 enrolling ADNI sites over a 3 year period. The estimated coefficients of variation intrinsic to measurements of geometry in a single phantom are in the range of 3-5 parts in 10(4). Phantom measurements accurately detect linear and nonlinear scaling in images. Gradient unwarping methods are readily assessed by phantom nonlinearity measurements. Phantom-based scaling correction reduces observed geometric drift in human images by one-third or more. Repair or replacement of phantoms between scans, however, is a confounding factor. The ADNI phantom can be used to assess both scanner performance and the validity of postprocessing image corrections in order to reduce systematic errors in human images. Reduced measurement errors should decrease measurement bias and increase statistical power for measurements of rates of change in the brain structure in AD treatment trials. Perhaps the greatest practical value of incorporating ADNI phantom measurements in a multisite study is to identify scanner errors through central monitoring. This approach has resulted in identification of system errors including sites misidentification of their own gradient hardware and the disabling of autoshim, and a miscalibrated laser alignment light. If undetected, these errors would have contributed to imprecision in quantitative metrics at over 25% of all enrolling ADNI sites.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center