Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 32

1.

Quantification of labile heme in live malaria parasites using a genetically encoded biosensor.

Abshire JR, Rowlands CJ, Ganesan SM, So PT, Niles JC.

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2068-E2076. doi: 10.1073/pnas.1615195114. Epub 2017 Feb 27.

2.

The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol.

Spillman NJ, Beck JR, Ganesan SM, Niles JC, Goldberg DE.

Cell Microbiol. 2017 Jun;19(6). doi: 10.1111/cmi.12719. Epub 2017 Jan 24.

PMID:
28067475
3.

A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JP, Carruthers VB, Niles JC, Lourido S.

Cell. 2016 Sep 8;166(6):1423-1435.e12. doi: 10.1016/j.cell.2016.08.019. Epub 2016 Sep 2.

PMID:
27594426
4.

Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite.

Dankwa S, Lim C, Bei AK, Jiang RH, Abshire JR, Patel SD, Goldberg JM, Moreno Y, Kono M, Niles JC, Duraisingh MT.

Nat Commun. 2016 Apr 4;7:11187. doi: 10.1038/ncomms11187.

5.

Synthetic RNA-protein modules integrated with native translation mechanisms to control gene expression in malaria parasites.

Ganesan SM, Falla A, Goldfless SJ, Nasamu AS, Niles JC.

Nat Commun. 2016 Mar 1;7:10727. doi: 10.1038/ncomms10727.

6.

Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX).

Birch CM, Hou HW, Han J, Niles JC.

Sci Rep. 2015 Jul 1;5:11347. doi: 10.1038/srep11347.

7.

Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction.

Goldfless SJ, Wagner JC, Niles JC.

Nat Commun. 2014 Nov 5;5:5329. doi: 10.1038/ncomms6329.

8.

Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum.

Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC.

Nat Methods. 2014 Sep;11(9):915-8. doi: 10.1038/nmeth.3063. Epub 2014 Aug 10.

9.

An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum.

Wagner JC, Goldfless SJ, Ganesan SM, Lee MC, Fidock DA, Niles JC.

Malar J. 2013 Oct 26;12:373. doi: 10.1186/1475-2875-12-373.

10.

Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction.

Belmont BJ, Niles JC.

PLoS One. 2012;7(10):e46868. doi: 10.1371/journal.pone.0046868. Epub 2012 Oct 8.

11.

Computational synchronization of microarray data with application to Plasmodium falciparum.

Zhao W, Dauwels J, Niles JC, Cao J.

Proteome Sci. 2012 Jun 21;10 Suppl 1:S10. doi: 10.1186/1477-5956-10-S1-S10.

12.

Malarial parasites accumulate labile zinc pools.

Niles JC.

Chem Biol. 2012 Jun 22;19(6):660-1. doi: 10.1016/j.chembiol.2012.06.003.

13.

Direct and specific chemical control of eukaryotic translation with a synthetic RNA-protein interaction.

Goldfless SJ, Belmont BJ, de Paz AM, Liu JF, Niles JC.

Nucleic Acids Res. 2012 May;40(9):e64. doi: 10.1093/nar/gks028. Epub 2012 Jan 24.

14.

Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis.

Kang JW, Lue N, Kong CR, Barman I, Dingari NC, Goldfless SJ, Niles JC, Dasari RR, Feld MS.

Biomed Opt Express. 2011 Sep 1;2(9):2484-92. doi: 10.1364/BOE.2.002484. Epub 2011 Aug 1.

15.

A microfabricated deformability-based flow cytometer with application to malaria.

Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M, Niles JC, Suresh S, Han J.

Lab Chip. 2011 Mar 21;11(6):1065-73. doi: 10.1039/c0lc00472c. Epub 2011 Feb 3.

16.

Engineering a direct and inducible protein-RNA interaction to regulate RNA biology.

Belmont BJ, Niles JC.

ACS Chem Biol. 2010 Sep 17;5(9):851-61. doi: 10.1021/cb100070j.

PMID:
20545348
17.

Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers.

Niles JC, Derisi JL, Marletta MA.

Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13266-71. doi: 10.1073/pnas.0906370106. Epub 2009 Jul 24.

18.

Utilizing RNA aptamers to probe a physiologically important heme-regulated cellular network.

Niles JC, Marletta MA.

ACS Chem Biol. 2006 Sep 19;1(8):515-24. Erratum in: ACS Chem Biol. 2006 Oct 20;1(9):601.

PMID:
17168539
19.

Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation.

Niles JC, Wishnok JS, Tannenbaum SR.

Nitric Oxide. 2006 Mar;14(2):109-21. Epub 2005 Dec 13. Review.

PMID:
16352449
20.

Urea lesion formation in DNA as a consequence of 7,8-dihydro-8-oxoguanine oxidation and hydrolysis provides a potent source of point mutations.

Henderson PT, Neeley WL, Delaney JC, Gu F, Niles JC, Hah SS, Tannenbaum SR, Essigmann JM.

Chem Res Toxicol. 2005 Jan;18(1):12-8.

PMID:
15651843

Supplemental Content

Loading ...
Support Center