Send to

Choose Destination

See 1 citation found by title matching your search:

Ann Biomed Eng. 2011 Nov;39(11):2706-20. doi: 10.1007/s10439-011-0367-5. Epub 2011 Aug 5.

Murine cardiac hemodynamics following manganese administration under isoflurane anesthesia.

Author information

Laboratory of Physiology and Biomedical Imaging, Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Cyprus, Nicosia, Cyprus.


This study examines (a) the temporal stability of hemodynamic indices of systolic and diastolic function in C57BL/6 mice under 1.5% isoflurane (ISO) (v/v) anesthesia conditions in 50:50 O(2)/N(2)O (v/v) within 90 min post-induction, and (b) the effects of Mn(2+) on the mouse hemodynamic response in male C57BL/6 mice (n = 16). Left ventricular catheterizations allowed estimation of the hemodynamic indices. Hypertonic saline infusion (10%) allowed absolute volume quantification in conjunction with a separate series of aortic flow experiments (n = 3). In a separate cohort of mice (n = 6), MnCl(2) (190 nmoles/g/bw) was infused via the left jugular for 29-39 min, following 11 min of baseline recording, to assess temporal responses. Stable temporal hemodynamic responses were achieved in control mice under ISO anesthesia. Hemodynamic indices during control, time-matched-control, baseline-Mn, and Mn-infused periods, were within normal expected ranges. No chronotropic changes were observed. Significant differences in systolic and diastolic cardiac indices of function (HR, EF, ESP, dP/dt (max), dP/dt (min), PAMP, τ(glantz), and τ(weiss)) resulted between baseline-Mn and Mn-infused time periods in Mn-treated mice at the 1% significance (p < 0.001). Transient positive, or negative, or positive followed by negative evoked pressure-volume loop shifts were observed (exemplified through changes in the end-systolic pressure-volume relationship and dP/dt (max)) in Mn-infusion studies. It is concluded that Mn(2+) can be used safely for prolonged mouse imaging studies, however, the significant variations elicited in cardiovascular hemodynamics post-manganese infusion, necessitate further investigations for its suitability and appropriateness for quantification of global cardiac function in image-based phenotyping.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center