Intracellular signaling pathways regulating net protein balance following diaphragm muscle denervation

Am J Physiol Cell Physiol. 2011 Feb;300(2):C318-27. doi: 10.1152/ajpcell.00172.2010. Epub 2010 Nov 17.

Abstract

Unilateral denervation (DNV) of rat diaphragm muscle increases protein synthesis at 3 days after DNV (DNV-3D) and degradation at DNV-5D, such that net protein breakdown is evident by DNV-5D. On the basis of existing models of protein balance, we examined DNV-induced changes in Akt, AMP-activated protein kinase (AMPK), and ERK&frac12; activation, which can lead to increased protein synthesis via mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K), glycogen synthase kinase-3β (GSK3β), or eukaryotic initiation factor 4E (eIF4E), and increased protein degradation via forkhead box protein O (FoxO). Protein phosphorylation was measured using Western analyses through DNV-5D. Akt phosphorylation decreased at 1 h and 6 h after DNV compared with sham despite decreased AMPK phosphorylation. Both Akt and AMPK phosphorylation returned to sham levels by DNV-1D. Phosphorylation of their downstream effector mTOR (Ser2481) did not change at any time point after DNV, and phosphorylated p70S6K and eIF4E-binding protein 1 (4EBP1) increased only by DNV-5D. In contrast, ERK&frac12; phosphorylation and its downstream effector eIF4E increased 1.7-fold at DNV-1D and phosphorylated GSK3β increased 1.5-fold at DNV-3D (P < 0.05 for both comparisons). Thus, following DNV there are differential effects on protein synthetic pathways with preferential activation of GSK3β and eIF4E over p70S6K. FoxO1 nuclear translocation occurred by DNV-1D, consistent with its role in increasing expression of atrogenes necessary for subsequent ubiquitin-proteasome activation evident by DNV-5D. On the basis of our results, increased protein synthesis following DNV is associated with changes in ERK&frac12;-dependent pathways, but protein degradation results from downregulation of Akt and nuclear translocation of FoxO1. No single trigger is responsible for protein balance following DNV. Protein balance in skeletal muscle depends on multiple synthetic/degradation pathways that should be studied in concert.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / metabolism
  • Animals
  • Diaphragm / enzymology*
  • Diaphragm / innervation*
  • Down-Regulation
  • Eukaryotic Initiation Factor-4E / metabolism
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Forkhead Transcription Factors / metabolism
  • Glycogen Synthase Kinase 3 / metabolism
  • Glycogen Synthase Kinase 3 beta
  • Male
  • Muscle Denervation*
  • Nerve Tissue Proteins / metabolism
  • Phosphorylation
  • Protein Biosynthesis*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism
  • Signal Transduction*
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Eukaryotic Initiation Factor-4E
  • Forkhead Transcription Factors
  • Nerve Tissue Proteins
  • Foxo1 protein, rat
  • mTOR protein, rat
  • Glycogen Synthase Kinase 3 beta
  • Gsk3b protein, rat
  • Proto-Oncogene Proteins c-akt
  • Ribosomal Protein S6 Kinases, 70-kDa
  • TOR Serine-Threonine Kinases
  • Extracellular Signal-Regulated MAP Kinases
  • Glycogen Synthase Kinase 3
  • AMP-Activated Protein Kinases