Format

Send to

Choose Destination
J Bone Miner Res. 2018 Apr;33(4):589-597. doi: 10.1002/jbmr.3347. Epub 2018 Jan 24.

Lower Bone Density, Impaired Microarchitecture, and Strength Predict Future Fragility Fracture in Postmenopausal Women: 5-Year Follow-up of the Calgary CaMos Cohort.

Author information

1
Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
2
McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada.
3
Departments of Medicine, Community Health Sciences, and Oncology, University of Calgary, Calgary, Canada.

Abstract

The aim of this prospective study was to use high-resolution peripheral quantitative computed tomography (HR-pQCT) to determine if baseline skeletal parameters can predict incident fragility fracture in women and, secondly, to establish if women that fracture lose bone at a faster rate than those who do not fracture. Women older than 60 years who experienced a fragility fracture during the 5-year follow-up period (incident fracture group, n = 22) were compared with those who did not experience a fragility fracture during the study (n = 127). After image registration between baseline and follow-up measures, standard and cortical morphological analyses were conducted. Odds ratios were calculated for baseline values and annualized percent change of HR-pQCT and finite element variables. At the radius, baseline HR-pQCT results show women who fractured had lower total bone mineral density (Tt.BMD; 19%), trabecular bone mineral density (Tb.BMD; 25%), and trabecular number (Tb.N; 14%), with higher trabecular separation (Tb.Sp; 19%) than women who did not fracture. At the tibia, women with incident fracture had lower Tt.BMD (15%), Tb.BMD (12%), cortical thickness (Ct.Th; 14%), cortical area (Ct.Ar; 12%), and failure load (10%) with higher total area (Tt.Ar; 7%) and trabecular area (Tb.Ar; 10%) than women who did not fracture. Odds ratios (ORs) at the radius revealed every SD decrease of Tt.BMD (OR = 2.1), Tb.BMD (OR = 2.0), and Tb.N (OR = 1.7) was associated with a significantly increased likelihood of fragility fracture. At the tibia, every SD decrease in Tt.BMD (OR = 2.1), Tb.BMD (OR = 1.7), Ct.Th (OR = 2.2), Ct.Ar (OR = 1.9), and failure load (OR = 1.7) were associated with a significantly increased likelihood of fragility fracture. Irrespective of scanning modality, the annualized percent rate of bone loss was not different between fracture groups. The results suggest baseline bone density, microarchitecture, and strength rather than change in these variables are associated with incident fragility fractures in women older than 60 years. Furthermore, irrespective of fragility fracture status, women experienced changes in skeletal health at a similar rate.

PMID:
29363165
DOI:
10.1002/jbmr.3347

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center