Retrodifferentiation and rejuvenation of senescent monocytic cells requires PARP-1

Exp Gerontol. 2007 Jun;42(6):554-62. doi: 10.1016/j.exger.2006.12.004. Epub 2007 Jan 10.

Abstract

Long-term culture of phorbol ester (TPA)-differentiated and growth-arrested human U937 leukemia cells was associated with expression of c-jun transcription factors and vimentin intermediate filaments until the cells entered a retrodifferentiation program. This retrodifferentiation process revealed a reversion of the senecent differentiated cells back to undifferentiated and proliferative active young cells. A significant protein ubiquitination was detectable before retrodifferentiation and rejuvenation indicating a proteolytic down-modulation of differentiation markers. Thus, proteolytic activity significantly increased during retrodifferentiation, however, proteasomal protein expression remained unaltered. In order to investigate proteasomal associates, (ADP-ribose)polymerase-1 (PARP-1) expression progressively increased to maximal levels at the time of retrodifferentiation suggesting a possible regulatory association. Indeed, PARP-1 immunoprecipitations demonstrated a co-immunoprecipitation of proteolytically active 20S proteasome with maximal levels during retrodifferentiation. Inhibition of PARP and the proteasome by 3-aminobenzamide and MG-132, respectively, revealed about 90% of apoptotic cells by cell cycle analysis at the time of retrodifferentiation whereas control cells doubled. In contrast, a similar PARP and proteasome inhibition within 5d after TPA-induced differentiation demonstrated little if any apoptotic effects. More specifically, down-modulation of PARP-1 by an antisense PARP-1 vector construct underwent a rapid differentiation and aging and revealed no detectable retrodifferentiation in contrast to control vector-transfected U937 cells. In conclusion, retrodifferentiation of growth-arrested U937 monocytic cells requires proteasomal protein degradation and activity of PARP-1.

MeSH terms

  • Apoptosis / drug effects
  • Apoptosis / physiology
  • Benzamides / pharmacology
  • Cell Differentiation / drug effects
  • Cell Differentiation / physiology*
  • Cell Proliferation / drug effects
  • Cellular Senescence / drug effects
  • Cellular Senescence / physiology*
  • DNA, Antisense / genetics
  • Humans
  • Leukemia, Myeloid / enzymology
  • Leukemia, Myeloid / pathology
  • Leupeptins / pharmacology
  • Monocytes / cytology*
  • Monocytes / drug effects
  • Monocytes / enzymology*
  • Phenotype
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Poly(ADP-ribose) Polymerases / genetics
  • Poly(ADP-ribose) Polymerases / metabolism*
  • Proteasome Endopeptidase Complex / metabolism
  • Tetradecanoylphorbol Acetate / pharmacology
  • U937 Cells

Substances

  • Benzamides
  • DNA, Antisense
  • Leupeptins
  • Poly(ADP-ribose) Polymerase Inhibitors
  • 3-aminobenzamide
  • PARP1 protein, human
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases
  • Proteasome Endopeptidase Complex
  • Tetradecanoylphorbol Acetate
  • benzyloxycarbonylleucyl-leucyl-leucine aldehyde