Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

TAM receptors regulate multiple features of microglial physiology.

Fourgeaud L, Través PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG, Callaway P, Zagórska A, Rothlin CV, Nimmerjahn A, Lemke G.

Nature. 2016 Apr 14;532(7598):240-244. doi: 10.1038/nature17630. Epub 2016 Apr 6.

2.

The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity.

Miner JJ, Daniels BP, Shrestha B, Proenca-Modena JL, Lew ED, Lazear HM, Gorman MJ, Lemke G, Klein RS, Diamond MS.

Nat Med. 2015 Dec;21(12):1464-72. doi: 10.1038/nm.3974. Epub 2015 Nov 2.

3.

Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells.

Dransfield I, Zagórska A, Lew ED, Michail K, Lemke G.

Cell Death Dis. 2015 Feb 19;6:e1646. doi: 10.1038/cddis.2015.18.

4.

A ligand for ALK.

Lemke G, Lew ED.

Sci Signal. 2015 Jan 20;8(360):fs2. doi: 10.1126/scisignal.aaa5566.

PMID:
25605971
5.

Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities.

Lew ED, Oh J, Burrola PG, Lax I, Zagórska A, Través PG, Schlessinger J, Lemke G.

Elife. 2014 Sep 29;3. doi: 10.7554/eLife.03385.

6.

Diversification of TAM receptor tyrosine kinase function.

Zagórska A, Través PG, Lew ED, Dransfield I, Lemke G.

Nat Immunol. 2014 Oct;15(10):920-8. doi: 10.1038/ni.2986. Epub 2014 Sep 7.

7.

Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

Bhattacharyya S, Zagórska A, Lew ED, Shrestha B, Rothlin CV, Naughton J, Diamond MS, Lemke G, Young JA.

Cell Host Microbe. 2013 Aug 14;14(2):136-47. doi: 10.1016/j.chom.2013.07.005.

8.

Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis.

Burstyn-Cohen T, Lew ED, Través PG, Burrola PG, Hash JC, Lemke G.

Neuron. 2012 Dec 20;76(6):1123-32. doi: 10.1016/j.neuron.2012.10.015.

9.

The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site.

Bae JH, Lew ED, Yuzawa S, Tomé F, Lax I, Schlessinger J.

Cell. 2009 Aug 7;138(3):514-24. doi: 10.1016/j.cell.2009.05.028.

10.

The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations.

Lew ED, Furdui CM, Anderson KS, Schlessinger J.

Sci Signal. 2009 Feb 17;2(58):ra6. doi: 10.1126/scisignal.2000021.

11.

Structural basis for reduced FGFR2 activity in LADD syndrome: Implications for FGFR autoinhibition and activation.

Lew ED, Bae JH, Rohmann E, Wollnik B, Schlessinger J.

Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19802-7. Epub 2007 Dec 3.

12.

Lacrimo-auriculo-dento-digital syndrome is caused by reduced activity of the fibroblast growth factor 10 (FGF10)-FGF receptor 2 signaling pathway.

Shams I, Rohmann E, Eswarakumar VP, Lew ED, Yuzawa S, Wollnik B, Schlessinger J, Lax I.

Mol Cell Biol. 2007 Oct;27(19):6903-12. Epub 2007 Aug 6.

13.

Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis.

Eswarakumar VP, Ozcan F, Lew ED, Bae JH, Tomé F, Booth CJ, Adams DJ, Lax I, Schlessinger J.

Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18603-8. Epub 2006 Nov 28.

14.

Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction.

Furdui CM, Lew ED, Schlessinger J, Anderson KS.

Mol Cell. 2006 Mar 3;21(5):711-7.

15.

Mutations in different components of FGF signaling in LADD syndrome.

Rohmann E, Brunner HG, Kayserili H, Uyguner O, Nürnberg G, Lew ED, Dobbie A, Eswarakumar VP, Uzumcu A, Ulubil-Emeroglu M, Leroy JG, Li Y, Becker C, Lehnerdt K, Cremers CW, Yüksel-Apak M, Nürnberg P, Kubisch C, Schlessinger J, van Bokhoven H, Wollnik B.

Nat Genet. 2006 Apr;38(4):414-7. Epub 2006 Feb 26. Erratum in: Nat Genet. 2006 Apr;38(4):495. Kubisch, Chriütian [corrected to Kubisch, Christian].

PMID:
16501574

Supplemental Content

Loading ...
Support Center