Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Correction to: Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains.

Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S.

Rice (N Y). 2018 Apr 24;11(1):29. doi: 10.1186/s12284-018-0221-6.

2.

Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains.

Hayashi S, Kuramata M, Abe T, Takagi H, Ozawa K, Ishikawa S.

Plant J. 2017 Sep;91(5):840-848. doi: 10.1111/tpj.13612. Epub 2017 Jul 20.

PMID:
28621830
3.

Low-cesium rice: mutation in OsSOS2 reduces radiocesium in rice grains.

Ishikawa S, Hayashi S, Abe T, Igura M, Kuramata M, Tanikawa H, Iino M, Saito T, Ono Y, Ishikawa T, Fujimura S, Goto A, Takagi H.

Sci Rep. 2017 May 25;7(1):2432. doi: 10.1038/s41598-017-02243-9.

4.

Detoxification of hydroxylated polychlorobiphenyls by Sphingomonas sp. strain N-9 isolated from forest soil.

Mizukami-Murata S, Sakakibara F, Fujita K, Fukuda M, Kuramata M, Takagi K.

Chemosphere. 2016 Dec;165:173-182. doi: 10.1016/j.chemosphere.2016.08.127. Epub 2016 Sep 17.

PMID:
27649311
5.

Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere.

Kuramata M, Sakakibara F, Kataoka R, Abe T, Asano M, Baba K, Takagi K, Ishikawa S.

Environ Microbiol. 2015 Jun;17(6):1897-909. doi: 10.1111/1462-2920.12572. Epub 2014 Aug 18.

PMID:
25039305
6.

Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains.

Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S.

Rice (N Y). 2013 Jan 11;6(1):3. doi: 10.1186/1939-8433-6-3. Erratum in: Rice (N Y). 2018 Apr 24;11(1):29.

7.

Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines.

Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamoto T, Yano M, Ishikawa S.

Breed Sci. 2013 Sep;63(3):284-91. doi: 10.1270/jsbbs.63.284. Epub 2013 Sep 1.

8.

Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants.

Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, Taguchi-Shiobara F, Youssefian S, Berberich T, Kusano T.

J Exp Bot. 2013 Nov;64(14):4517-27. doi: 10.1093/jxb/ert267.

9.

Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles.

Oono Y, Kawahara Y, Yazawa T, Kanamori H, Kuramata M, Yamagata H, Hosokawa S, Minami H, Ishikawa S, Wu J, Antonio B, Handa H, Itoh T, Matsumoto T.

Plant Mol Biol. 2013 Dec;83(6):523-37. doi: 10.1007/s11103-013-0106-4. Epub 2013 Jul 16.

10.

Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice.

Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H.

Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19166-71. doi: 10.1073/pnas.1211132109. Epub 2012 Nov 6. Erratum in: Proc Natl Acad Sci U S A. 2018 May 14;:.

11.

Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer.

Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S.

BMC Plant Biol. 2011 Nov 29;11:172. doi: 10.1186/1471-2229-11-172.

12.

A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7.

Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M.

J Exp Bot. 2010 Mar;61(3):923-34. doi: 10.1093/jxb/erp360. Epub 2009 Dec 18.

13.

A novel plant cysteine-rich peptide family conferring cadmium tolerance to yeast and plants.

Matsuda T, Kuramata M, Takahashi Y, Kitagawa E, Youssefian S, Kusano T.

Plant Signal Behav. 2009 May;4(5):419-21. Epub 2009 May 25.

14.

Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice.

Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S.

J Exp Bot. 2009;60(9):2677-88. doi: 10.1093/jxb/erp119. Epub 2009 Apr 28.

15.

Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation.

Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T.

Plant Cell Physiol. 2009 Jan;50(1):106-17. doi: 10.1093/pcp/pcn175. Epub 2008 Nov 18.

PMID:
19017626
16.

Increased thiol biosynthesis of transgenic poplar expressing a wheat O-acetylserine(thiol) lyase enhances resistance to hydrogen sulfide and sulfur dioxide toxicity.

Nakamura M, Kuramata M, Kasugai I, Abe M, Youssefian S.

Plant Cell Rep. 2009 Feb;28(2):313-23. doi: 10.1007/s00299-008-0635-5. Epub 2008 Nov 15.

PMID:
19011861
17.

Citrinolactones A, B and C, and Sclerotinin C, plant growth regulators from Penicillium citrinum.

Kuramata M, Fujioka S, Shimada A, Kawano T, Kimura Y.

Biosci Biotechnol Biochem. 2007 Feb;71(2):499-503. Epub 2007 Feb 7.

18.

Brevicompanine C, cyclo-(D-Ile-L-Trp), and cyclo-(D-Leu-L-Trp), plant growth regulators from Penicillium brevi-compactum.

Kimura Y, Sawada A, Kuramata M, Kusano M, Fujioka S, Kawano T, Shimada A.

J Nat Prod. 2005 Feb;68(2):237-9.

PMID:
15730251

Supplemental Content

Loading ...
Support Center