Format
Sort by
Items per page

Send to

Choose Destination

Selected items

Items: 1 to 20 of 26

1.

The Venus flytrap attracts insects by the release of volatile organic compounds.

Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler JP, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H.

J Exp Bot. 2014 Feb;65(2):755-66. doi: 10.1093/jxb/ert455. Epub 2014 Jan 13. Erratum in: J Exp Bot. 2015 Jun;66(11):3429.

2.

The Venus flytrap attracts insects by the release of volatile organic compounds.

Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler JP, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H.

J Exp Bot. 2015 Jun;66(11):3429. doi: 10.1093/jxb/erv242. Epub 2015 May 21. No abstract available.

3.

Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula.

Gao P, Loeffler TS, Honsel A, Kruse J, Krol E, Scherzer S, Kreuzer I, Bemm F, Buegger F, Burzlaff T, Hedrich R, Rennenberg H.

New Phytol. 2015 Feb;205(3):1320-9. doi: 10.1111/nph.13120. Epub 2014 Oct 27.

4.

The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration.

Fasbender L, Maurer D, Kreuzwieser J, Kreuzer I, Schulze WX, Kruse J, Becker D, Alfarraj S, Hedrich R, Werner C, Rennenberg H.

New Phytol. 2017 Apr;214(2):597-606. doi: 10.1111/nph.14404. Epub 2017 Jan 2.

PMID:
28042877
5.

The Dionaea muscipula ammonium channel DmAMT1 provides NH₄⁺ uptake associated with Venus flytrap's prey digestion.

Scherzer S, Krol E, Kreuzer I, Kruse J, Karl F, von Rüden M, Escalante-Perez M, Müller T, Rennenberg H, Al-Rasheid KA, Neher E, Hedrich R.

Curr Biol. 2013 Sep 9;23(17):1649-57. doi: 10.1016/j.cub.2013.07.028. Epub 2013 Aug 15.

6.

The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R, Al-Rasheid KA, Rennenberg H, Shabala S, Neher E, Hedrich R.

Curr Biol. 2016 Feb 8;26(3):286-95. doi: 10.1016/j.cub.2015.11.057. Epub 2016 Jan 21.

7.

Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps.

Scherzer S, Böhm J, Krol E, Shabala L, Kreuzer I, Larisch C, Bemm F, Al-Rasheid KA, Shabala S, Rennenberg H, Neher E, Hedrich R.

Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7309-14. doi: 10.1073/pnas.1507810112. Epub 2015 May 21.

8.

Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells.

Scherzer S, Shabala L, Hedrich B, Fromm J, Bauer H, Munz E, Jakob P, Al-Rascheid KAS, Kreuzer I, Becker D, Eiblmeier M, Rennenberg H, Shabala S, Bennett M, Neher E, Hedrich R.

Proc Natl Acad Sci U S A. 2017 May 2;114(18):4822-4827. doi: 10.1073/pnas.1701860114. Epub 2017 Apr 17.

9.

The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms.

Schulze WX, Sanggaard KW, Kreuzer I, Knudsen AD, Bemm F, Thøgersen IB, Bräutigam A, Thomsen LR, Schliesky S, Dyrlund TF, Escalante-Perez M, Becker D, Schultz J, Karring H, Weber A, Højrup P, Hedrich R, Enghild JJ.

Mol Cell Proteomics. 2012 Nov;11(11):1306-19. doi: 10.1074/mcp.M112.021006. Epub 2012 Aug 12.

10.

Secreted major Venus flytrap chitinase enables digestion of Arthropod prey.

Paszota P, Escalante-Perez M, Thomsen LR, Risør MW, Dembski A, Sanglas L, Nielsen TA, Karring H, Thøgersen IB, Hedrich R, Enghild JJ, Kreuzer I, Sanggaard KW.

Biochim Biophys Acta. 2014 Feb;1844(2):374-83. doi: 10.1016/j.bbapap.2013.11.009. Epub 2013 Nov 22.

PMID:
24275507
11.

Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure.

Lind C, Dreyer I, López-Sanjurjo EJ, von Meyer K, Ishizaki K, Kohchi T, Lang D, Zhao Y, Kreuzer I, Al-Rasheid KA, Ronne H, Reski R, Zhu JK, Geiger D, Hedrich R.

Curr Biol. 2015 Mar 30;25(7):928-35. doi: 10.1016/j.cub.2015.01.067. Epub 2015 Mar 19.

12.

Venus flytrap carnivorous lifestyle builds on herbivore defense strategies.

Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer AL, Krol E, Al-Rasheid KA, Mithöfer A, Weber AP, Schultz J, Hedrich R.

Genome Res. 2016 Jun;26(6):812-25. doi: 10.1101/gr.202200.115. Epub 2016 May 4.

13.
14.

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3.

Demir F, Horntrich C, Blachutzik JO, Scherzer S, Reinders Y, Kierszniowska S, Schulze WX, Harms GS, Hedrich R, Geiger D, Kreuzer I.

Proc Natl Acad Sci U S A. 2013 May 14;110(20):8296-301. doi: 10.1073/pnas.1211667110. Epub 2013 Apr 29.

15.

Influence of the sevoflurane concentration on the occurrence of epileptiform EEG patterns.

Kreuzer I, Osthaus WA, Schultz A, Schultz B.

PLoS One. 2014 Feb 26;9(2):e89191. doi: 10.1371/journal.pone.0089191. eCollection 2014.

16.

Long-term treatment with continuous positive airway pressure improves quality of life in obstructive sleep apnoea syndrome.

Sanner BM, Klewer J, Trumm A, Randerath W, Kreuzer I, Zidek W.

Eur Respir J. 2000 Jul;16(1):118-22.

17.

[Pronounced hypersomnia in a 13-year-old patient with periodic leg movements].

Laschewski F, Sanner B, Konermann M, Kreuzer I, Hörstensmeyer D, Sturm A.

Pneumologie. 1997 Aug;51 Suppl 3:725-8. German.

PMID:
9340626
18.

[Obstructive sleep apnea in patients with coronary heart disease].

Sanner B, Konermann M, Weiss T, Kreuzer I, Laschewski F, Burmann-Urbanek M, Sturm A.

Wien Med Wochenschr. 1996;146(13-14):345-7. German.

PMID:
9012178
19.

[Modification of cardiopulmonary performance parameters in patients with obstructive sleep apnea treated with nCPAP therapy].

Konermann M, Sanner B, Klewer J, Kreuzer I, Laschewski F, Burmann-Urbanek M.

Wien Med Wochenschr. 1996;146(13-14):340-3. German.

PMID:
9012176
20.

[Effects of nCPAP therapy on the blood picture in patients with obstructive sleep apnea].

Sanner B, Konermann M, Doberauer C, Laschewski F, Kreuzer I.

Pneumologie. 1995 Jul;49(7):413-7. German.

PMID:
7675756

Supplemental Content

Support Center