Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 168

1.

A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate.

Messmer AM, Leong JS, Rondeau EB, Mueller A, Despins CA, Minkley DR, Kent MP, Lien S, Boyce B, Morrison D, Fast MD, Norman JD, Danzmann RG, Koop BF.

Mar Genomics. 2018 Apr 16. pii: S1874-7787(17)30254-4. doi: 10.1016/j.margen.2018.03.005. [Epub ahead of print]

2.

High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes.

Poley JD, Braden LM, Messmer AM, Igboeli OO, Whyte SK, Macdonald A, Rodriguez J, Gameiro M, Rufener L, Bouvier J, Wadowska DW, Koop BF, Hosking BC, Fast MD.

Int J Parasitol Drugs Drug Resist. 2018 Mar 13;8(2):174-188. doi: 10.1016/j.ijpddr.2018.02.007. [Epub ahead of print]

3.

Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome.

Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR, Withler RE, Rondeau EB, Koop BF, Devlin RH.

PLoS One. 2018 Apr 5;13(4):e0195461. doi: 10.1371/journal.pone.0195461. eCollection 2018.

4.

Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon.

Le Luyer J, Laporte M, Beacham TD, Kaukinen KH, Withler RE, Leong JS, Rondeau EB, Koop BF, Bernatchez L.

Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12964-12969. doi: 10.1073/pnas.1711229114. Epub 2017 Nov 21.

5.

Subcellular localization and characterization of estrogenic pathway regulators and mediators in Atlantic salmon spermatozoal cells.

von Schalburg KR, Gowen BE, Leong JS, Rondeau EB, Davidson WS, Koop BF.

Histochem Cell Biol. 2018 Jan;149(1):75-96. doi: 10.1007/s00418-017-1611-3. Epub 2017 Oct 5.

PMID:
28983690
6.

Effects of the vertically transmitted microsporidian Facilispora margolisi and the parasiticide emamectin benzoate on salmon lice (Lepeophtheirus salmonis).

Poley JD, Sutherland BJG, Fast MD, Koop BF, Jones SRM.

BMC Genomics. 2017 Aug 17;18(1):630. doi: 10.1186/s12864-017-4040-8.

7.

Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture.

Macqueen DJ, Primmer CR, Houston RD, Nowak BF, Bernatchez L, Bergseth S, Davidson WS, Gallardo-Escárate C, Goldammer T, Guiguen Y, Iturra P, Kijas JW, Koop BF, Lien S, Maass A, Martin SAM, McGinnity P, Montecino M, Naish KA, Nichols KM, Ólafsson K, Omholt SW, Palti Y, Plastow GS, Rexroad CE Rd, Rise ML, Ritchie RJ, Sandve SR, Schulte PM, Tello A, Vidal R, Vik JO, Wargelius A, Yáñez JM; FAASG Consortium.

BMC Genomics. 2017 Jun 27;18(1):484. doi: 10.1186/s12864-017-3862-8.

8.
9.

Cypermethrin exposure induces metabolic and stress-related gene expression in copepodid salmon lice (Lepeophtheirus salmonis).

Poley JD, Braden LM, Messmer AM, Whyte SK, Koop BF, Fast MD.

Comp Biochem Physiol Part D Genomics Proteomics. 2016 Dec;20:74-84. doi: 10.1016/j.cbd.2016.08.004. Epub 2016 Aug 31.

PMID:
27612154
10.

Sex-biased gene expression and sequence conservation in Atlantic and Pacific salmon lice (Lepeophtheirus salmonis).

Poley JD, Sutherland BJ, Jones SR, Koop BF, Fast MD.

BMC Genomics. 2016 Jul 4;17:483. doi: 10.1186/s12864-016-2835-7.

11.

A PCR assay detects a male-specific duplicated copy of Anti-Müllerian hormone (amh) in the lingcod (Ophiodon elongatus).

Rondeau EB, Laurie CV, Johnson SC, Koop BF.

BMC Res Notes. 2016 Apr 22;9:230. doi: 10.1186/s13104-016-2030-6.

12.

The Atlantic salmon genome provides insights into rediploidization.

Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JK, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Våge DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJ, Jonassen I, Maass A, Omholt SW, Davidson WS.

Nature. 2016 May 12;533(7602):200-5. doi: 10.1038/nature17164. Epub 2016 Apr 18.

PMID:
27088604
13.

Multi-tissue transcriptome profiles for coho salmon (Oncorhynchus kisutch), a species undergoing rediploidization following whole-genome duplication.

Kim JH, Leong JS, Koop BF, Devlin RH.

Mar Genomics. 2016 Feb;25:33-37. doi: 10.1016/j.margen.2015.11.008. Epub 2015 Nov 21.

PMID:
26614614
14.

Infectious hematopoietic necrosis virus (IHNV) persistence in Sockeye Salmon: influence on brain transcriptome and subsequent response to the viral mimic poly(I:C).

Müller A, Sutherland BJ, Koop BF, Johnson SC, Garver KA.

BMC Genomics. 2015 Aug 26;16:634. doi: 10.1186/s12864-015-1759-y.

15.

Differential modulation of resistance biomarkers in skin of juvenile and mature pink salmon, Oncorhynchus gorbuscha by the salmon louse, Lepeophtheirus salmonis.

Braden LM, Barker DE, Koop BF, Jones SR.

Fish Shellfish Immunol. 2015 Nov;47(1):7-14. doi: 10.1016/j.fsi.2015.08.008. Epub 2015 Aug 10.

PMID:
26272636
16.

A comprehensive analysis of teleost MHC class I sequences.

Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM.

BMC Evol Biol. 2015 Mar 6;15:32. doi: 10.1186/s12862-015-0309-1.

17.

Transcriptomic responses to emamectin benzoate in Pacific and Atlantic Canada salmon lice Lepeophtheirus salmonis with differing levels of drug resistance.

Sutherland BJ, Poley JD, Igboeli OO, Jantzen JR, Fast MD, Koop BF, Jones SR.

Evol Appl. 2015 Feb;8(2):133-48. doi: 10.1111/eva.12237. Epub 2014 Dec 22.

18.

Signatures of resistance to Lepeophtheirus salmonis include a TH2-type response at the louse-salmon interface.

Braden LM, Koop BF, Jones SR.

Dev Comp Immunol. 2015 Jan;48(1):178-91. doi: 10.1016/j.dci.2014.09.015. Epub 2014 Oct 16.

PMID:
25453579
19.

Chemokine receptors in Atlantic salmon.

Grimholt U, Hauge H, Hauge AG, Leong J, Koop BF.

Dev Comp Immunol. 2015 Mar;49(1):79-95. doi: 10.1016/j.dci.2014.11.009. Epub 2014 Nov 15.

PMID:
25445904
20.

Atlantic salmon possesses two clusters of type I interferon receptor genes on different chromosomes, which allows for a larger repertoire of interferon receptors than in zebrafish and mammals.

Sun B, Greiner-Tollersrud L, Koop BF, Robertsen B.

Dev Comp Immunol. 2014 Dec;47(2):275-86. doi: 10.1016/j.dci.2014.08.007. Epub 2014 Aug 19.

Supplemental Content

Support Center