Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 35

1.

Establishing the V̇O2 versus constant-work rate relationship from ramp-incremental exercise: Simple strategies for an unsolved problem.

Iannetta D, Azevedo RA, Keir DA, Murias JM.

J Appl Physiol (1985). 2019 Oct 3. doi: 10.1152/japplphysiol.00508.2019. [Epub ahead of print]

PMID:
31580218
2.

A Critical Evaluation of Current Methods for Exercise Prescription in Women and Men.

Iannetta D, Inglis EC, Mattu AT, Fontana FY, Pogliaghi S, Keir DA, Murias JM.

Med Sci Sports Exerc. 2019 Aug 30. doi: 10.1249/MSS.0000000000002147. [Epub ahead of print]

PMID:
31479001
3.

Training heart failure patients with reduced ejection fraction attenuates muscle sympathetic nerve activation during mild dynamic exercise.

Notarius CF, Millar PJ, Keir DA, Murai H, Haruki N, O'Donnell E, Marzolini S, Oh P, Floras JS.

Am J Physiol Regul Integr Comp Physiol. 2019 Oct 1;317(4):R503-R512. doi: 10.1152/ajpregu.00104.2019. Epub 2019 Jul 31.

PMID:
31365304
4.

Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men.

Keir DA, Duffin J, Millar PJ, Floras JS.

J Physiol. 2019 Jul;597(13):3281-3296. doi: 10.1113/JP277691. Epub 2019 May 28.

PMID:
31087324
5.

Training-Induced Changes in the RCP, [HHb]BP and MLSS: Evidence of Equivalence.

Inglis EC, Iannetta D, Keir DA, Murias JM.

Int J Sports Physiol Perform. 2019 Apr 29:1-23. doi: 10.1123/ijspp.2019-0046. [Epub ahead of print]

PMID:
31034305
6.

Response.

Keir DA, Pogliaghi S, Murias JM.

Med Sci Sports Exerc. 2019 Apr;51(4):830. doi: 10.1249/MSS.0000000000001851. No abstract available.

PMID:
30882755
7.

Response.

Keir DA, Pogliaghi S, Murias JM.

Med Sci Sports Exerc. 2019 Mar;51(3):603. doi: 10.1249/MSS.0000000000001820. No abstract available.

PMID:
30768585
8.

A Simple Method to Quantify the V˙O2 Mean Response Time of Ramp-Incremental Exercise.

Iannetta D, Murias JM, Keir DA.

Med Sci Sports Exerc. 2019 May;51(5):1080-1086. doi: 10.1249/MSS.0000000000001880.

PMID:
30601794
9.

The Respiratory Compensation Point and the Deoxygenation Break Point Are Valid Surrogates for Critical Power and Maximum Lactate Steady State.

Keir DA, Pogliaghi S, Murias JM.

Med Sci Sports Exerc. 2018 Nov;50(11):2375-2378. doi: 10.1249/MSS.0000000000001698. No abstract available.

PMID:
30134366
10.

An equation to predict the maximal lactate steady state from ramp-incremental exercise test data in cycling.

Iannetta D, Fontana FY, Maturana FM, Inglis EC, Pogliaghi S, Keir DA, Murias JM.

J Sci Med Sport. 2018 Dec;21(12):1274-1280. doi: 10.1016/j.jsams.2018.05.004. Epub 2018 May 24.

PMID:
29803737
11.

Power reserve following ramp-incremental cycling to exhaustion: implications for muscle fatigue and function.

Hodgson MD, Keir DA, Copithorne DB, Rice CL, Kowalchuk JM.

J Appl Physiol (1985). 2018 Aug 1;125(2):304-312. doi: 10.1152/japplphysiol.00722.2017. Epub 2018 Apr 26.

12.

Using ramp-incremental V̇O2 responses for constant-intensity exercise selection.

Keir DA, Paterson DH, Kowalchuk JM, Murias JM.

Appl Physiol Nutr Metab. 2018 Sep;43(9):882-892. doi: 10.1139/apnm-2017-0826. Epub 2018 Mar 23. Review.

PMID:
29570982
13.

Slow V˙O2 kinetics in acute hypoxia are not related to a hyperventilation-induced hypocapnia.

Keir DA, Pollock M, Thuraisingam P, Paterson DH, Heigenhauser GJF, Rossiter HB, Kowalchuk JM.

Respir Physiol Neurobiol. 2018 May;251:41-49. doi: 10.1016/j.resp.2018.02.010. Epub 2018 Feb 22.

15.

The effects of short work vs. longer work periods within intermittent exercise on V̇o2p kinetics, muscle deoxygenation, and energy system contribution.

McCrudden MC, Keir DA, Belfry GR.

J Appl Physiol (1985). 2017 Jun 1;122(6):1435-1444. doi: 10.1152/japplphysiol.00514.2016. Epub 2017 Mar 23.

16.

Critical power testing or self-selected cycling: Which one is the best predictor of maximal metabolic steady-state?

Mattioni Maturana F, Keir DA, McLay KM, Murias JM.

J Sci Med Sport. 2017 Aug;20(8):795-799. doi: 10.1016/j.jsams.2016.11.023. Epub 2017 Jan 24.

PMID:
28302463
17.

Identification of critical intensity from a single lactate measure during a 3-min, submaximal cycle-ergometer test.

Fontana FY, Colosio AL, Keir DA, Murias JM, Pogliaghi S.

J Sports Sci. 2017 Nov;35(22):2191-2197. doi: 10.1080/02640414.2016.1261177. Epub 2016 Dec 6.

PMID:
27923329
18.

Can measures of critical power precisely estimate the maximal metabolic steady-state?

Mattioni Maturana F, Keir DA, McLay KM, Murias JM.

Appl Physiol Nutr Metab. 2016 Nov;41(11):1197-1203.

PMID:
27819154
19.

Effect of heavy-intensity 'priming' exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity step-transitions initiated from an elevated work rate.

Nederveen JP, Keir DA, Love LK, Rossiter HB, Kowalchuk JM.

Respir Physiol Neurobiol. 2017 Jan;235:62-70. doi: 10.1016/j.resp.2016.09.013. Epub 2016 Sep 28.

20.

The slow component of pulmonary O2 uptake accompanies peripheral muscle fatigue during high-intensity exercise.

Keir DA, Copithorne DB, Hodgson MD, Pogliaghi S, Rice CL, Kowalchuk JM.

J Appl Physiol (1985). 2016 Aug 1;121(2):493-502. doi: 10.1152/japplphysiol.00249.2016. Epub 2016 Jun 23.

Supplemental Content

Loading ...
Support Center