Format

Send to

Choose Destination

See 1 citation found using an alternative search:

J Chem Inf Model. 2006 Mar-Apr;46(2):836-43.

A novel search engine for virtual screening of very large databases.

Author information

1
Laboratory of Biomolecular NMR, Barcelona Biomedical Research Institute, Parc Científic de Barcelona, Josep Samitier, 1-5 08028 Barcelona, Spain.

Abstract

Virtual screening of large chemical databases using the structure of the receptor can be computationally very demanding. We present a novel strategy that combines exhaustive similarity searches directly in SMILES format with the docking of flexible ligands, whose 3D structure is generated on the fly from the SMILES representation. Our strategy makes use of the recently developed LINGO tools to extract implicit chemical information from SMILES strings and integrates LINGO similarities into a pseudo-evolutionary algorithm. The algorithm represents a combination of a fast target-independent similarity method with a slower but information richer target-focused method. A virtual search of FactorXa ligands provided 62% of the potential hits after docking only 6.5% of a database of nearly 1 million molecules. The set of solutions showed good diversity, indicating that the method shows good scaffold hopping capabilities.

PMID:
16563015
DOI:
10.1021/ci050458q
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center