Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 322

1.

Capitalizing on disaster: Establishing chromatin specificity behind the replication fork.

Ramachandran S, Ahmad K, Henikoff S.

Bioessays. 2017 Apr;39(4). doi: 10.1002/bies.201600150. Review.

PMID:
28133760
2.

An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites.

Skene PJ, Henikoff S.

Elife. 2017 Jan 16;6. pii: e21856. doi: 10.7554/eLife.21856.

3.

Histone variants on the move: substrates for chromatin dynamics.

Talbert PB, Henikoff S.

Nat Rev Mol Cell Biol. 2017 Feb;18(2):115-126. doi: 10.1038/nrm.2016.148. Review.

PMID:
27924075
4.

Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters.

Grünberg S, Henikoff S, Hahn S, Zentner GE.

EMBO J. 2016 Nov 15;35(22):2435-2446.

PMID:
27797823
5.

Mechanisms of Nucleosome Dynamics In Vivo.

Henikoff S.

Cold Spring Harb Perspect Med. 2016 Sep 1;6(9). pii: a026666. doi: 10.1101/cshperspect.a026666. Review.

PMID:
27503998
6.

Epigenetics, cellular memory and gene regulation.

Henikoff S, Greally JM.

Curr Biol. 2016 Jul 25;26(14):R644-8. doi: 10.1016/j.cub.2016.06.011.

PMID:
27458904
7.

CENPT bridges adjacent CENPA nucleosomes on young human α-satellite dimers.

Thakur J, Henikoff S.

Genome Res. 2016 Sep;26(9):1178-87. doi: 10.1101/gr.204784.116.

8.

Transcriptional Regulators Compete with Nucleosomes Post-replication.

Ramachandran S, Henikoff S.

Cell. 2016 Apr 21;165(3):580-92. doi: 10.1016/j.cell.2016.02.062.

PMID:
27062929
9.

Nucleosome dynamics during chromatin remodeling in vivo.

Ramachandran S, Henikoff S.

Nucleus. 2016;7(1):20-6. doi: 10.1080/19491034.2016.1149666.

10.

Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus?

Drinnenberg IA, Henikoff S, Malik HS.

Trends Cell Biol. 2016 Jul;26(7):498-510. doi: 10.1016/j.tcb.2016.01.005. Review.

PMID:
26877204
11.

Corrigendum: ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.

Zentner GE, Kasinathan S, Xin B, Rohs R, Henikoff S.

Nat Commun. 2015 Dec 16;6:10264. doi: 10.1038/ncomms10264. No abstract available.

12.

ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.

Zentner GE, Kasinathan S, Xin B, Rohs R, Henikoff S.

Nat Commun. 2015 Oct 22;6:8733. doi: 10.1038/ncomms9733. Erratum in: Nat Commun. 2015;6:10264.

13.

Inner Kinetochore Protein Interactions with Regional Centromeres of Fission Yeast.

Thakur J, Talbert PB, Henikoff S.

Genetics. 2015 Oct;201(2):543-61. doi: 10.1534/genetics.115.179788.

14.

Replicating Nucleosomes.

Ramachandran S, Henikoff S.

Sci Adv. 2015 Aug 7;1(7). pii: e1500587.

15.

The Genetic Map Enters Its Second Century.

Henikoff S.

Genetics. 2015 Jul;200(3):671-4. doi: 10.1534/genetics.115.178434.

16.

Epigenomic Landscapes Reflect Neuronal Diversity.

Henikoff S.

Neuron. 2015 Jun 17;86(6):1319-21. doi: 10.1016/j.neuron.2015.06.002.

17.

A simple method for generating high-resolution maps of genome-wide protein binding.

Skene PJ, Henikoff S.

Elife. 2015 Jun 16;4:e09225. doi: 10.7554/eLife.09225.

18.

Epigenome editing made easy.

Zentner GE, Henikoff S.

Nat Biotechnol. 2015 Jun;33(6):606-7. doi: 10.1038/nbt.3248. No abstract available.

PMID:
26057978
19.

Diversity in the organization of centromeric chromatin.

Steiner FA, Henikoff S.

Curr Opin Genet Dev. 2015 Apr;31:28-35. doi: 10.1016/j.gde.2015.03.010. Review.

PMID:
25956076
20.

A unique chromatin complex occupies young α-satellite arrays of human centromeres.

Henikoff JG, Thakur J, Kasinathan S, Henikoff S.

Sci Adv. 2015 Feb 12;1(1). pii: e1400234.

Supplemental Content

Support Center